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1 ACTIVITIES

1.1 Activities within the graduate program

The following table presents all the classes taken, credits and grades, totaling 32
credits, which are required by the graduate program. There was an internship period that
accounted for part of the credits. This item also presents a brief description of each class
taken and the work developed in each of them.

Class Grade Credits
IAU5822: Research Methods in Arch. and Urbanism’s Technology A 8
IAU5808: Thermal performance of residencies A 8
IAU5958: Energy e�ciency in buildings A 8
IAU5918: Teaching procedures and methods in arch. and urbanism A 4
Program’s Activity: Supervised Internship in the Teaching Program N/A 4
TOTAL - 32

Table 1: Classes taken and credits received

IAU5822 - Research Methods in Architecture and Urbanism’s Technol-
ogy

This class presented di�erent research methods that encompassed both focus areas
in the program; Theory and History, and Technology. The students had the opportunity
to present their initial research plans and received advices, critics and help from peers and
professors to develop a more robust and complete plan. There were exercises to complete
in and out of the classroom, to practice what was given during the classes. This course
contributed to better delineate the research plan, aided by the exercises that resulted in a
project with an overall higher quality.

IAU5808 – Thermal performance of residencies

Several passive strategies for conditioning were presented, and each professor
presented a technique that is more related to their respective research area. Thermal
performance according to the Brazilian Standard NBR 15575-3 was presented and studied,
and exercises were given to apply the method presented in the standard. The adaptive
model from ASHRAE-55 was also presented and an exercise was proposed to learn and
practice its application. The student was able to aid her classmates in this exercise, given
that the adaptive model was part of her master’s and she had previous knowledge on how
to apply it. As part of the work developed for this class, the student presented summaries
on articles pertaining topics related to the class’ theme and wrote an extended essay on
evaluation methods for thermal comfort based on the available literature, proposing a
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brief method to create an adaptive model.

IAU5958 – Energy e�ciency in buildings

Passive and active strategies for energy savings were presented. There was a strong
emphasis on developing a good design and the importance of the engineer, architect or
designer to know the physical phenomena to which a building must respond, so that it
is possible to achieve energy e�ciency with low costs. Exercises to implement and apply
methods given by the Brazilian Standard were performed. The students gave presentations
on themes related to their research projects so that they would each get to know each
other’s projects. At the end of the course, there was a final presentation in groups formed
by blocks of themes within the same field of research. The class was important for the
student to be in touch with di�erent techniques and passive strategies to implement in
building design, since it is one of the areas of interest in the research being developed.

IAU5918 – Teaching procedures and methods in architecture and ur-
banism

This short-term class had as its objective to prepare the student to be an intern
in teaching. A teaching panorama of the Brazilian reality was presented and there were
discussions about education in universities, national and international. Questions about
where the curricula seems to be lacking in some aspects were raised, and there were talks
about schools where this seems to be a bigger issue. Possible solutions were discussed as
a group. An intermediate exercise was performed, so the students could practice what
was discussed and presented up to that point. The exercise required that a curricula
from another institution be analyzed and altered according to the discussions in class in
an attempt to improve it. The alterations and how each student thought it was best to
improve each chosen document was presented in class. Suggestions were made during the
presentation and the students altered and/or included what classmates and professors
observed. This class gave the student the opportunity to build a curricula with a topic
that was specific to her research area, therefore allowing the application of her previous
knowledge in the field, to contribute to the bibliography proposed and enrich the program.

1.2 Extracurricular Activities

1.2.1 Proficiency Exam

Language: Spanish

Institution: CICBEU, São Carlos

Status: Approved



13

1.2.2 Teaching Internship Program

The student participated in the Teaching Internship Program as a Teaching As-
sistant (TA) in the undergraduate class IAU0649 – Environmental Comfort in Buildings
during the first semester of 2017. The student organized the schedule for the classes
throughout the semester combining the necessary amount of classes to the available days
in the semester. During the internship period she participated in all classes and helped
the students with the exercises given in class. Every week there was a new exercise for
the students to prepare for the following week. The Teaching Assistant was responsible
for sending such exercises on the class’ email and made herself available during the week
and during classes, should any student need her help. She also corrected all the exercises,
handed them back to the students and cleared any doubts that they might have. The
TA prepared a booklet with all the exercises given to the students during the semester,
including their answers when possible. She also taught part of a class, under supervision,
explaining the FAST Diagram, which is a method to aid in ranking the variables to be
included in a design, so the designer is better guided when making his/her decisions. It is
a way to define what the most important aspects are in the design given one’s design focus.
The TA also helped the students develop this diagram and use them in their final project
for this class. At the end, the student organized all the projects, grades and attendance;
contributing with opinions on the final projects.

1.2.3 Workshops

• Web of Science at USP: Chemistry Institute of São Carlos

• Meet the Editors: Physics Institute of São Carlos

• Training School - Design Process for Building Rettrofit: University of Campinas e
HafenCity University

• Information, Visualization and Comprehension: design as a resource for graduate
school

1.2.4 Courses

• Mini Arduino Course: TOPUS Aerospace Research Group

• Introductory Course to Thermal Load Calculation: IAU – Prof. Dr. Anderson Ubices
(UFSCar)

1.2.5 Conferences

1st Conference on Environmental Quality and Energy E�ciency in Buildings, São
Paulo, SP, Brazil.
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Conference Article: Windsor Conference 2018

Developing user profiles for mixed-mode o�ce buildings operation based on occupant
behaviour evaluation

Abstract: User profiles can generate discrepancies between the measured and
simulated data, when building performance simulation tools provide the latter. Nevertheless,
specialized literature observed the inadequacy of using current thermal comfort models
to describe occupant comfort in mixed-mode buildings and no specific guidelines are
provided in current standards. This paper addresses occupant behaviour within mixed-
mode o�ce buildings controlled by occupants, located in a Brazilian humid subtropical
climate, with the objective to develop user profiles of operation to be used as input data in
computer simulation analyses. Three o�ce rooms operating in a concurrent mixed-mode
configuration were investigated in a field research. Indoor climatic measurements monitored
the environmental variables (dry bulb temperature, radiant temperature, air velocity and
relative humidity) and user control variables (manual operation of the air-conditioning and
natural ventilation systems) in situ. Field surveys were simultaneously conducted with
the o�ces’ occupants. As a result, occupant behaviour regarding the building’s controls is
analysed and compared to the static and adaptive thermal comfort models from ASHRAE
Standard 55-2013. In conclusion, a user profile to be used as input data for computer
simulations is developed, aiming to support more accurate investigations about the thermal
and energy performances of mixed-mode o�ce buildings.

Keywords: mixed-mode buildings; occupant behaviour; thermal comfort; field
research.
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2 PRELIMINARY THESIS STRUCTURE

2.1 Abstract

The way buildings are operated greatly influence energy consumption, and occupants
play a significant role in it. However, occupant behavior is a variable that generates high
levels of uncertainty in computer simulation, making it di�cult for architects, designers and
engineers to accurately predict energy consumption in buildings. Studies have identified
that there is a gap between real and simulated data concerning energy use, which can,
in great part, be attributed to occupant behavior and how this is inputed into energy
simulation software. In an e�ort to fill this gap, researchers have been conducting in
situ measurements to collect data on occupant behavior regarding the actions taken to
better adjust and perform in their environment, such as window opening, adjusting blinds,
lighting and thermostat temperature. The collected data is then used to create stochastic
models to provide more accurate input data for simulations. This research intends to
create an algorithm to simulate occupant behavior, in relation to window opening/closing
an AC activation/deactivation, in mixed-mode o�ce buildings in a high altitude tropical
climate (São Carlos, SP, Brazil). The method consists of four main stages; (a) Buildings
data collection and pre-test: where buildings to be monitored were selected and a trial
monitoring performed; (b) In situ measurements and data analysis: monitoring of ten
mixed-mode o�ces over a twelve month period; (c) Statistical methods’ application and
creation of algorithm; and (d) Validation and test. The main objective of this study is to
provide more accurate input data on occupant behavior to be used in simulation programs,
so more accurate output data can be achieved.

2.2 Resumo

A maneira como os edifícios são operados tem grande influência em seu consumo
energético, no qual os usuários têm um papael importante. Contudo, o comportamento
do usuário é uma variável que gera altos níveis de incerteza na simulação computacional,
dificultando para arquitetos, projetistas e engenheiros prever com precisão o consumo
de energia de um edifício. Diversos estudos identificaram uma lacuna entre os dados
reais e os simulados, no tangente ao uso de energia elétrica, que pode, em grande parte,
ser atribuída ao comportamento do usuário e como este é inserido nos programas de
simulação computacional. Para preenceher esta lacuna, pesquisadores têm conduzido
medições in loco para coletar dados sobre o comportamento do usuário em relação às
ações que tomam para melhor se ajustarem e desempenharem em seu ambiente, como
abertura de janelas, ajuste de cortinas, iluminação e temperatura, por exemplo. Os dados
coletados são então utilizados para criar modelos estocásticos para proporcionar dados de
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entrada mais precisos para simulações. Esta pesquisa tem a intenção de criar um algoritmo
para simular o comportamento do usuário, em relação a abertura/fechamento de janelas e
acionamento/desacionamento do ar condicionado, em escritórios de modo-misto em um
clima tropical de altitude (São Carlos, SP, Brasil). O método consiste em quatro etapas
principais; (a) Coleta de dados dos edifícios e pré-teste; (b) Medições in loco e análise
de dados; (c) Aplicação de métodos estatísticos e criação do algoritmo e; (d) Validação e
teste do algoritmo. O principal objetivo desta pesquisa é proporcionar dados de entrada
mais precisos sobre o comportamento do usário para serem utilizados em programas de
simulação, para que dados de saída mais precisos possam ser obtidos.

2.3 Introduction

Over the past 15 years there has been an increase in the evaluation and use of
energy in buildings. The need for more sustainable solutions has become a global concern
and energy analysis has been one of the focuses of such discussions. A raise in energy
consumption has occurred due to the constant technological development and shown itself
in alterations in the use pattern in a global context. Such consumption has presented
an impact on the urban and global contexts, resulting in a raise in green house gas
emissions (GHG), global warming and a decrease in natural resources. As foreseen, one of
the consequences are climate changes, which have become a threat. Several international
agreements, such as the Kyoto Protocol have taken place in an e�ort to remedy the situation.
However, climate changes have already occurred, resulting in higher temperatures, leading
to an intensified use of air conditioning in buildings. The building sector consumes 20% of
the total energy in the world, as stated by the U.S. Energy Information Administration
(Energy Information Administration, 2016). In Brazil, o�ce buildings contribute to 15% of
the energy consumed (BEN, 2016), and of these 15%, the total energy consumption with
artificial conditioning and lighting is of approximately 69% (Eletrobrás, 2009). Nevertheless,
this same sector presents great potential to reduce climate changes, since it presents great
opportunities of energy savings (IPCC, 2014).

The way air conditioning is used in buildings can cause high impacts on their
energy consumption, given that the same building can present very divergent energy uses
depending on how it is operated by users (Li et al, 2007 apud (YAN et al., 2015). However,
there are strategies that can be implemented to decrease energy consumption, one of which
is mixed-mode ventilation (MMV). MMV is a combination of natural ventilation and a
mechanical ventilation system, which can be activated when solely using natural ventilation
is not enough to maintain the environment comfortable. In this system, natural ventilation
is used when the external conditions are favorable, thus activating the mechanical system
when the opposite situation occurs (DEUBLE; DEAR, 2012), the system combines natural
ventilation and the use of air conditioning units to reduce energy consumption. This is
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a relatively new solution, and there are no standards or guidelines that indicate how it
should be operated or even how to use its control strategies. Besides, there is no guide on
how to simulate or even design buildings of this kind (SALCIDO; RAHEEM; ISSA, 2016),
making it di�cult to simulate this scenario in computational programs, which can often
lead to non reliable results.

Although passive strategies, such as natural ventilation (NV) reduce the needs
for energy use, they increase the levels of uncertainty by reinforcing the central role
of occupants, as they become the essential elements in control of the building and its
environment (HALDI et al., 2016). With the growing public concern regarding climate
change, more attention has been drawn towards energy consumption in buildings (JANDA,
2011), and predicting energy demand has gained significant relevance in designing and
constructing buildings, from the early design stages to post occupancy (DELZENDEH
et al., 2017). Such is the need for the decrease of energy consumption that regulatory
conditions have been established for all European countries, in an e�ort to decrease the
energy required for heating, cooling, ventilation and lighting (DELZENDEH et al., 2017).
Energy consumption is related to several di�erent factors, such as the thermo-physical
properties of a building, construction techniques implemented, climate and location,
quality and maintenance of the installed systems and occupants’ behavior and activities
(DELZENDEH et al., 2017).

Computer simulation is an important and useful tool to predict energy consumption
in buildings based on design information. However, several studies (FABI et al., 2013; CALÌ
et al., 2016b; STAZI; NASPI; D’ORAZIO, 2017a; YAN et al., 2015; SCHAKIB-EKBATAN
et al., 2015) have shown that there is a discrepancy between the real and predicted data
regarding energy consumption in buildings. Studies have demonstrated that the real energy
consumed in buildings can be up to three times greater than the predicted values (FABI et
al., 2013; CALÌ et al., 2016b). This evidences a performance gap, which can be attributed
to, amongst other factors, a disregard of occupant behavior in the simulation process.
Martinaitis et al. (2015) conducted five di�erent studies to show that buildings do not
perform as predicted even when using very accurate simulations and concluded that user
behavior and preferences are significant contributors to the identified gap. Schakib-Ekbatan
et al. (2015) identified occupant behavior as possibly the most overlooked parameter, and
that it might not be properly considered as an integral part of the energy design, thus
resulting in discrepancies in the data.

Occupants adapt within their environment in order to achieve comfort in ways
that are convenient to them, and not necessarily energy conserving (RIJAL et al., 2007;
NICOL; HUMPHREYS, 2002). They may act in unexpected ways to respond to a crisis of
discomfort, and such actions are on the opposite end of the static assumptions designers
tend to make when portraying such parameter in simulation. Therefore, user behavior
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can be considered one of the variables that generate great amounts of uncertainties in
simulation results. Users can a�ect the indoor environment as well as energy consumption,
depending on how they behave in the environment and on how they interact with the
building and the controls available to them, as windows, ventilation systems and shading
devices (ANDERSEN; FABI; CORGNATI, 2016), for example, becoming a very significant
variable.

Several studies have addressed the issue of occupant behavior within di�erent types
of buildings and with emphasis on di�erent influential parameters (PISELLO et al., 2016;
CALÌ et al., 2016a; SCHAKIB-EKBATAN et al., 2015; STAZI; NASPI; D’ORAZIO, 2017b;
RIJAL; HUMPHREYS; NICOL, 2014). Most of the studies focus on residential and o�ce
buildings, since these show greater impact on global energy use. Great part of the work
in this area study one particular type of user interaction; the use of electricity and plug
loads being the most researched subject, followed by window opening behavior and the
use of fans and/or air conditioning (DELZENDEH et al., 2017).

However, even with e�orts being made to diminish the gap between predicted and
actual data and to better understand occupant’s actions, Andersen et al. (2013) states
that there are still few models relating occupant behavior and window opening, presenting
a di�culty to computer simulation users, who have little or no information on how to
model such behavior to acquire precise results.

This research proposes the study of occupant behavior in mixed-mode o�ce build-
ings related to the opening/closing of windows and the activation/deactivation of the air
conditioning. These buildings display operable windows and individual air conditioning
(AC) units in the o�ces, all of which the users are free to operate at any given time. There
are no automation systems, nor any temperature indication of any kind. This work intends
to create an algorithm to be implemented in computer simulation programs, to provide
more accurate input data for simulations of mixed-mode o�ce buildings related to energy
use and thermal comfort, once there is a discrepancy between the real and simulated data
referring to occupant behavior (ANDERSEN et al., 2013).

2.4 Objectives

The main objective of this work is to create an algorithm to be implemented in
simulation programs to provide more precise input data on occupant behavior, specifically
related to window opening/closing and air conditioning activation/deactivation as a
function of the environmental variables being considered. The algorithm is to be used
within a mixed-mode scenario, where there are operable windows and AC units that the
user can freely operate at any time, and no automation systems. The specific objectives to
be achieved as the research progresses are:
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• To identify the main driving factors that lead to window opening and AC activation
in the di�erent seasons of the year in mixed-mode o�ce buildings.

• To contribute to other researches in the field by developing, applying and testing
the methodology used in this work.

2.5 Literature Review

This item presents the main themes studied in this research, such as occupant
behavior, mixed-mode ventilation, computer simulation and statistical methods applied to
data sets to create stochastic models portraying user behavior. This section also counts
with an item that describes several works developed applying similar methodologies.

2.5.1 Occupant Behavior

In a general sense, occupant behavior can be defined as the interactions with a
building’s systems in an e�ort to control the indoor environment for health and comfort,
be it thermal, visual and/or acoustic (DELZENDEH et al., 2017). Improving air quality,
by ventilating and eliminating odor and pollution, visual or lighting quality, by controlling
glare, reflections and the amount of illuminance, acoustical conditions, by avoiding noise,
and aesthetics, as well as improving thermal comfort in the indoor environment are
prerequisites established by buildings’ users so they are able to adjust and adapt systems
and components according to their preferences (BLUYSSEN, 2012).

The term ’alliesthesia’ is the combination of the words ’changed’ (allios) and
’sensation’ (aisthesis) (CABANAC, 1971), that can be used to describe that an external
stimulus can be understood as pleasant or unpleasant, depending on the signals sent from
the body. It is human nature to search for pleasant conditions and avoid unpleasant ones.
As stated by Nicol e Humphreys (2002), if there is a change that causes discomfort, people
will act in ways to regain their comfort. However, because of people’s di�erent backgrounds
and preferences, also their physical, physiological and psychological di�erences, and several
other influential external drivers such as economic and regulatory, for example, they don’t
perceive and respond in the same manner (BLUYSSEN, 2012).

Occupants play a very significant role in a building’s energy performance, as they
are present, move around and interact with the building and its systems to better fit their
purposes and comfort needs, resulting on an impact in energy consumption (HONG et
al., 2017). Occupant behavior is among the six most influencing factors of a building’s
performance, along with climate, building envelope, equipment operation and maintenance,
and indoor environment conditions (YOSHINO, 2013). As there is a growing concern for
sustainability and low energy buildings using passive strategies, such as natural ventilation,
the role of occupants in a building is reinforced, as they become the most important
elements controlling their environment (HALDI et al., 2016).
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Occupants present the individual aspect that is related to personal experiences,
preferences and expectations, which can a�ect the total energy consumption in a building.
Their active use of energy, as in the way they interact with control systems and their
available building elements to reach their desired levels of thermal comfort have a significant
impact on the total amount of energy consumed (DELZENDEH et al., 2017). Such
interactions happen in di�erent ways; window opening and closing, lighting, shading
devices, HVAC (Heating, Ventilation and Air-Conditioning) systems, hot water and
appliances (Figure 1).

Figure 1: Occupants’ types of activities a�ecting building energy consumption (DELZEN-
DEH et al., 2017)

Hong et al. (2015) identified actions and inactions that users may take to regain
comfort. Actions can be adjusting the level of clothing, opening a window or adjusting
the thermostat. As for inactions, it could be, for example, moving to a di�erent location
and tolerating some degree of discomfort. Di�erent actions and inactions can be taken
by di�erent users in response to the same kind of situations, thus impacting in very
di�erent ways how energy is consumed in the same environment. Therefore, it is critical
to understand the relationship between the building and its occupants’ activities, lifestyle
and behavior.

In an e�ort to better portray occupants and their impact on the built environment,
researchers have categorized occupants into di�erent groups according to their energy use.
D’Oca et al. (2014) created the groups active, medium and passive regarding occupants and
their energy use. The active users are the ones that change the heating/cooling set point,
whereas the passive user does nothing and continues to tolerate some degree of discomfort.
Other categorizations, such as the one made by Hong et al. (2015), described with
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more accuracy people’s actions, classifying them as; "energy frugal", "energy indi�erent"
and "energy profligate". Using another method, which classified behavioral factors in
residential buildings, Chen et al. (2015) categorized users into three levels referring to
their complexity, that is; simple, intermediate and complex. Each level was developed for
a di�erent application; the simple level was for statistical analysis, the intermediate, with
more parameters, for case studies, and the complex was meant for detailed simulations.
This division, using occupants’ behavior to create profiles, could aid in leading to more
accurate assumptions when performing energy analysis. Nonetheless, there is still a need
to perform large scale studies to gather comprehensive data to create such profiles.

Occupant behavior is a contributing variable to the uncertainty of building perfor-
mance, and it can significantly a�ect building energy consumption. According to Hoes et
al. (2009), it is the leading source of uncertainty in predicting energy use in buildings.

The International Energy Agency (IEA), lists occupant behavior, among other
factors such as climate and building envelope, as one of the driving forces of energy use in
buildings (IEA, 2012). Schweiker (2010) defines occupant behavior as “a human being’s
unconscious and conscious actions to control the physical parameters of the surrounding
built environment based on the comparison of the perceived environment to the sum of
past experiences.” Some of these actions can be interactions with windows, lights, blinds,
thermostats, air conditioning and plug-in appliances.

Based on the definition above, it is possible to state that occupant behavior is
uncertain because it can be influenced by a number of factors, be them external to
the occupant, such as air temperature and wind speed, or internal or individual, such
as personal background and preferences, as well as building properties, which can be
perceived as ownership or the availability of heating devices, for example (FABI et al.,
2012).

Traditionally, occupant behavior has been connected to indoor and outdoor thermal
conditions, leading to interactions with building control systems, which are only one aspect
of occupant behavior. Human behavior, when in the field of social sciences, can be set in
relation to causes that are called “internal or individual factors”, which in addition to
external factors, influence the occupant behavior with a variety of perceptions and actions
in complex ways (SCHWEIKER, 2010).

2.5.1.1 Parameters Influencing Occupant Behavior

Energy consumption is largely a�ected by occupant behavior, as they respond
di�erently to regain their levels of thermal comfort, which can vary according to their
personal (psychological, physiological) and social parameters (DELZENDEH et al., 2017).
In addition, parameters such as climate, economy, regulations and policies, architecture
and interior design of the spaces can also influence energy use (Figure 2).
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Figure 2: Factors influencing occupants’ behavior regarding energy use (DELZENDEH et
al., 2017)

Climatic parameters, including outdoor temperature, relative humidity, solar ra-
diation, wind and rain are very significant influences on occupant behavior and their
interaction with a building’s systems to achieve thermal comfort (DELZENDEH et al.,
2017). Several researchers have studied the influence of climatic parameters on occupant
behavior (SCHAKIB-EKBATAN et al., 2015; RIJAL; HUMPHREYS; NICOL, 2015; LI et
al., 2015), and because such parameters are time/date dependent, stochastic models are
the most common method in these studies, estimating the probability of given outcomes.

In order to attain more accurate results from simulation programs, it is important
to consider and understand the reasons that lead users to take actions and interact with
the building and its systems. Factors that influence occupant behavior, either external or
individual, have been categorized and denominated as “Drivers”, which are described as
the reasons that lead the occupant to react in a building and suggests that such occupant
acts, thus driving the occupant to take an action (FABI et al., 2012).

Several researchers have divided driving factors into categories,Peng et al. (2012),
when conducting a residential study, classified behaviors in three main categories:

• Environmentally related: actions triggered by environmental factors

• Time related: actions repeated within certain time frames
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• Random: actions taken depending on uncertain/non quantifiable factors.

The main three categories defined by the authors can be applied to other types
of building, such as an o�ce building, where environmental factors will be an important
influence, as will time related actions, which can be related to routine. Random related
actions can also be observed in both types of building. Depending on the action under
consideration, some drivers can have a greater impact on triggering an action than others.

Another influential parameter is the building type and the types of activities
performed by the users within the built space. The building type usually determines the
activities performed in it, which in turn, sets a clothing type, metabolic rates and the
occupants’ specific needs and expectations related to such activities, as well as the way
they interact with the building. Studies have mostly focused on residential and o�ce
buildings given their impact on the total energy consumption of the sector.

Social and personal parameters are also critical when investigating occupants’
comfort and energy attitude. Social and personal factors have been identified as also being
influential on energy behavior in residencies, such as users’ awareness of energy issues,
gender, age, employment, family size and social-cultural belonging (MARTINAITIS et
al., 2015). Janda (2011) also highlights the e�ect of education and growth in awareness in
people’s attitude towards energy use. Other relevant and influencing factors, such as energy
regulations, policies and economical parameters, as energy price and employment, have been
discussed in the literature. As part of such discussion, several studies have investigated the
influence of the above-mentioned parameters on occupants’ energy consumption behavior
(MARTINAITIS et al., 2015; CALÌ et al., 2016b; RIJAL et al., 2011). It is possible to
observe that when occupants are directly responsible for paying the bills, they save more.
A study by Park e Kim (2012) identified, by means of questionnaires, that occupants
tolerated a certain amount of discomfort on account of energy prices, thus a�ecting the
way energy is consumed. Ownership of the unit, be it residential or at an o�ce, also a�ects
the way energy is consumed by occupants.

The state of occupants, that is, their arrival, presence and departure has been
studied and revealed that users tend to adjust given building systems upon arrival more
than at departure. This parameter has been considered and modeled in several studies
(YUN; STEEMERS, 2008; PAGE et al., 2008) to investigate the connection between
occupants’ movements and their behavior. Architecture and interior design can also
influence users in the way that the space may change their perception. However, the impact
of interior design has not been broadly studied.

Fabi et al. (2012) classified drivers into five groups, namely: physical environmental
factors, psychological factors, physiological factors, social factors and contextual factors.
The latter was included when the authors made a review on window opening, showing
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how one action can indicate to di�erent drivers. Their descriptions are as follows:

a) Physical environmental: Environmental aspects that lead occupants to act and
that have an impact in energy consumption: temperature, humidity, air velocity, noise,
illumination and odor.

b) Contextual: factors that do not influence in a direct way, but are determined by
the context, such as building insulation, façade orientation and heating system type, for
example.

c) Psychological: occupants seek to satisfy their needs regarding thermal comfort,
acoustic comfort, health, among other factors. They also have expectations for their
environment, such as temperature and indoor environmental quality.

d) Physiological: some factors, such as age, gender, health condition, clothing and
activity level are physiological driving forces that can determine the physiological condition
of occupants.

e) Social: social driving forces are related to the interaction between the occupants.

Figure 3: Categories of the factors that influence occupant behavior in building (STAZI;
NASPI; D’ORAZIO, 2017a)

All operations taken to improve or maintain adequate thermal comfort levels have
an impact and a consequence on the indoor environment. Figure 3 presents a combination
of the above-mentioned drivers’ categories that can influence occupant behavior. By taking
actions, the occupant becomes the central operator who controls the energy consumption
and indoor environmental quality in a building (FABI et al., 2012).

2.5.2 Mixed-mode Ventilation

Natural ventilation is a passive strategy that can provide good levels of thermal
comfort in buildings. It can o�er good air quality while improving thermal comfort by
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increasing air speed during daytime, ventilation rates during the night and by removing heat
from the environment, all without consuming a significant amount of energy. In hot climates,
the most common method to maintain adequate levels of thermal comfort is air conditioning,
which consumes large amounts of energy, resulting in increased costs and green house
emissions (KRAUSSE; COOK; LOMAS, 2007; VANGTOOK; CHIRARATTANANON,
2007). In light of the amount of energy consumed with cooling and mechanical ventilation
in commercial buildings, it is critical that such strategies are considered when designing.

Due to an increased concern to improve energy e�ciency and the need to pursue a
greater use of passive strategies for thermal comfort, new alternatives for design strategies
discourage the use of mechanical cooling systems where and when natural ventilation can
be used (SALCIDO; RAHEEM; ISSA, 2016). However, studies have shown that when in
extreme weather conditions, using only natural ventilation can lead to higher levels of
discomfort (BAKER; STANDEVEN, 1996). As a response, a type of hybrid ventilation
system, denominated “mixed-mode” has been studied and evaluated during the past
years (SALCIDO; RAHEEM; ISSA, 2016). According to Holmes e Hacker (2007), the
Mixed-Mode Ventilation (MMV) system is a hybrid ventilation approach to condition the
indoor environment using a combination of natural ventilation from windows, that can
be either manually or automatically controlled, and mechanical air conditioning that can
provide air distribution and cooling when (or where) needed.

There are other kinds of ventilation modes that can be combined with natural
ventilation, such as low power fans and passive inlet vents. Whichever choice the designer
makes, the main objective is to maximize thermal comfort in the building, while avoiding
unnecessary use of energy during the year with mechanical air conditioning (CBE, 2013).

According to the Center of the Built Environment (CBE) at the University of
California, there are three types of mixed-mode ventilation buildings, classified as shown in
Figure 4. The concurrent mixed-mode operation uses natural ventilation and air conditioning
in the same space and at the same time; the air conditioning serves as a complement to
natural ventilation, and users are free to operate windows based on their preferences. In
the change-over design, both situations occur in the same space, though at di�erent times;
the change-over can happen on a seasonal or daily basis. This design uses one system or
the other, and in several cases it involves an automated system that shuts down the air
conditioning when windows are open and vice-versa. As for the zoned system, it refers to
di�erent zones within the same building, each making use of a di�erent cooling system.

The mixed-mode ventilation system is especially significant in hot climates, for
example, where it is not possible to solely rely on natural ventilation, and thermal comfort
levels are harder to achieve using only passive strategies. Comfort levels are expected to be
met to ensure good indoor environmental quality for users. Using only natural ventilation
in such climates has been proven insu�cient to meet requirements and user satisfaction.
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Figure 4: Types of MMV buildings (Adapted from Salcido; Raheem; Issa, 2016 and CBE,
2013)

Therefore, a possible strategy is the combination of natural ventilation and mechanical
cooling systems, in a mixed-mode ventilation system (BUONOMANO; SHERMAN, 2009).
It is a viable solution to provide cooling, air ventilation, indoor air quality (IAQ) and
thermal comfort for the users of a given building (SALCIDO; RAHEEM; ISSA, 2016).

As stated by Salcido, Raheem e Issa (2016), mixed-mode ventilation strategies have
been used and shown e�ective results in energy saving, while still maintaining indoor air
quality for occupants. The authors also state that mixed-mode buildings can save up to
40% of HVAC energy when optimizing window operation schedules thus considering such
strategy a sustainable way to condition buildings. However, since it is a new subject, there
are no complete guides on how to simulate and/or design mixed-mode o�ce buildings.

2.5.3 Computer Simulation

Computer simulation increasingly became more a�ordable and possible, both to
researches and designers, due to the fast progress seen in the computer industry and in
computational techniques.

Such tools and techniques are believed to accelerate the design process and optimize
building performance at what can be considered a low cost (AUGENBROE, 2002). During
the 1990’s, there was a considerable growth in the use of computer simulation tools, due
to a greater availability both of hardware and software. Personal computers became more
a�ordable in industry and research, leading to a progress in computer simulation in the field
of techniques and tools. Today, as stated by Wang and John (2016), building simulation
is involved in several stages, such as design, engineering, operation and management of
buildings, becoming an integral part of building design and industry.

There are several advantages to the use of simulation tools, with the growing need
for energy savings and reduction of environmental impacts, simulation based design is an
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important tool to achieve such targets.

According to Wang and John (2016), the main goal for developing building simula-
tion techniques and tools is to assist in the creation of a built environment that meets all
the existing needs and criteria and presents the least cost with construction and operation,
as well as a low amount of resource consumption. One of the greatest advantages to the
simulation tools is that they are able to provide quantitative data and thus aid in the
decision making process. One of the main reasons why such tools are being promoted and
enforced is the increasing number of building performance codes and standards. Therefore,
the adoption of simulation tools has been enforced to evaluate a building’s performance
compliance. As exemplified by Wang and John (2016), ASHRAE 90.1 requires that the
whole year building energy simulation results are presented in order to rate the building’s
energy performance. The Green Building Rating System adopts the same policy. Various
governments also demand, and with that accelerate, the use of simulation tools for building
design to achieve low energy buildings and to meet their energy and greenhouse gas (GHG)
reduction targets (WANG; JOHN, 2016).

Building energy simulation programs are based on a building’s basic physical
parameters, such as heat transfer, occupant density and operation schedules.They are very
precise in simulating deterministic factors influencing buildings’ energy balance. However,
when representing non-deterministic variables, their accuracy to faithfully represent reality
diminishes. Occupant behavior is by nature stochastic, and many times remains neglected
when represented in simulation programs because it is accounted for as a fixed presence,
such as schedules or deterministic interaction strategies (HALDI et al., 2016). Yan et al.
(2015) stated that the adoption of standard schedules to portray occupant behavior is an
incorrect way to represent the dynamic human-building interaction. Dar et al. (2015) also
state that using ’average behavior can be a major cause of the gap between the actual and
predicted energy use of the building’.

This is mainly the reason why energy simulation of buildings o�ering adaptive
opportunities to their occupants present such discrepancies between the simulated and
real data. Buildings with the same physical features can show great di�erences in energy
consumption, which can be related to occupancy patterns, users’ lifestyle, comfort prefer-
ences and interactions with the buildings systems. However, most programs have little
consideration of the impact of occupant behavior on energy use (LI et al., 2015).

This situation is true for residential and o�ce buildings. Several studies conducting
field survey monitoring indicate a large di�erence between identical buildings, attributed
to di�erences in occupant behavior. As stated by Haldi et al. (2016), it is necessary to
reliably represent occupants within a building, so low-energy free running buildings can
be correctly designed and thus avoid contradictions between occupants’ freedom and
sustainability.
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2.5.4 Statistical Methods

A mathematical model of a natural phenomenon is a quantitative description of
that phenomenon (TAYLOR; KARLIN, 1994). There are several examples in di�erent
subject areas, such as biology and physics, of mathematical models portraying natural
phenomenons. In the context of architecture, for instance, a model can provide qualitative
information about the relationships between several factors that might influence a given
event. Ultimately, a model is judged by its usefulness, and such criterion allows the
existence of more than just one model for the same event; that is, there isn’t one best
model for a given phenomenon (TAYLOR; KARLIN, 1994). Within the realm of models,
there are deterministic and the stochastic models. The word deterministic means "certain",
and these models are able to predict a single outcome from a given set of circumstances,
whereas stochastic models, the word "stochastic" meaning "random", "predict a set of
possible outcomes weighted by their likelihoods, or probabilities" (TAYLOR; KARLIN,
1994).

According to Taylor e Karlin (1994), there are three components to scientific
modeling: (a) a natural phenomenon being studied; (b) a logical system to deduce the
implications about the phenomenon; and (c) a connection that links the elements of the
natural systems being studied to the logical system applied to model it. Several methods,
bu using the logical system, can be applied to generate stochastic models to be used in
simulation programs. According to Schweiker e Wagner (2016), simulating user behavior
in a given context of building modeling from an energetic point of view is mostly done
by aggregated stochastic models based on logistic regression, Markov chain or similar
methods (FABI et al., 2013; HALDI; ROBINSON, 2009; RIJAL et al., 2007; SCHWEIKER;
SHUKUYA, 2009). Several authors have used the above-mentioned methods in their studies,
(ANDERSEN et al., 2013; CALÌ et al., 2016a) and some have combined such methods
to achieve their desired results (JONES et al., 2017; SHI; ZHAO, 2016). The following
sections are a brief description of commonly used methods to create such models.

2.5.4.1 Markov Chain

A stochastic process is a random process, which is a collection of random values in
a common probability space (BOROVKOV, 2014). It is an abstract notion that describes
quantities that happen at random and can be altered with the passing of time (ITÔ, 2006).
It is possible to notice in random processes that the outcome of a given trial usually depends
on the previous trial. When that outcome is known, there is practically no dependence on
the preceding trial, which is known as the Markov property. A random sequence that takes
values in a measurable space is a Markov Chain (BOROVKOV, 2014). More specifically, a
Markov chain is a collection of random variables that, given the present, past and future
states are independent (GAMERMAN; LOPES, 2006). Therefore, a Markovian process is
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a stochastic process that only considers the previous state to predict the next one, being
independent of the process (HALDI; ROBINSON, 2009).

According to Fritsch et al. (1990), a Markovian process does not have a memory,
and the prediction of the next state will depend only on the present state and no other.
The authors made a first attempt to develop a mathematical model to predict the state of
windows by using a discrete-time Markov process model to predict transitions between sets
of data of opening angles for four o�ce rooms. Studies that use Markov chain technique,
intend to generate synthetic data that can portray the overall statistics of the measured
data (RICHARDSON; THOMSON; INFIELD, 2008).

2.5.4.2 Logistic Regression

’Regression is the process of learning relationships between inputs and continuous
outputs from example data, which enables predictions for novel inputs’ (STULP; SIGAUD,
2015). Regression methods are an integral part of any data analysis that intends to describe
the relation between a response variable and one or more explanatory variables (HOSMER;
LEMESHOW, 1989).

Logistic regression is a statistical method commonly applied to predict the proba-
bility of a binary response variable when explanatory variables are at given values (JAMES
et al., 2007). Such method has been used in several studies (HALDI; ROBINSON, 2009;
JONES et al., 2017), analyzing user behavior in relation to the opening/closing of windows
to describe the probability of a window being open or closed, thus configuring the window’s
state (HALDI; ROBINSON, 2009; RIJAL; STEVENSON, 2010; SHI; ZHAO, 2016), or
alterations to the window’s state (ANDERSEN et al., 2013; CALÌ et al., 2016a) with a
set of explanatory variables. The relation between the ‘correct’ probability for the binary
response and the several explanatory variables can be described by multivariate logistic
regression. The univariate logistic regression expresses the probability function of a certain
event occurring, and can be used in the multivariate logistic regression, which describes the
probability of an event occurring depending on an explanatory variable (CALÌ et al., 2016).
To select the most significant variables and to build a better model, the Akaike Information
Criterion (AIC) is commonly applied, where the forward and backwards procedure is used.

2.5.4.3 Akaike Information Criterion (AIC)

According to Burnham e Anderson (2004), AIC is calculated considering the
adjustment in the model in comparison to the data set with the amount of variables used
in the model. The lowest AIC value must be calculated for the value that best describes
the measured data using the least amount of variables. The authors describe that when
comparing two models, only the absolute di�erence between the AIC values must be
assessed, and not the absolute values.
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Schweiker e Shukuya (2009) state that the formula for this method represents a
commitment between the model’s precision and complexity. Therefore, the use of AIC
is to select the models and not to test a hypothesis. Moreover, AIC is based on the
assumption that there is no real model, but a better model that describes the data
collected (BURNHAM; ANDERSON, 2004).

2.5.4.4 Gaussian Process

A Gaussian process model is a non-parametric technique that is mainly used in
regression problems (YOON; MOON, 2018) and can be defined as a collection of random
variables (GRAY; SCHMIDT, 2018). Common to all Gaussian process models is that they
assume a ’directional dependency between an input or covariate x and the corresponding
observable output or response y’ (KUSS, 2006). It provides good prediction accuracy
for regression problems as a data-driven model. According to Davis (2006), ’the class
of Gaussian processes is one of the most widely used families of stochastic processes for
modeling dependent data observed over time, or space, or time and space.’ Its popularity is
due to two essential properties; a) A Gaussian process is entirely determined by its mean
and covariance functions, making model fitting easier, since only the first and second order
moments of the process need to be specified; and b) Solving the prediction problem is
uncomplicated, ’the best predictor of a Gaussian process at an unobserved time point or
location is a linear function of the observed values and, in many cases, these functions can
be computed rather quickly using recursive formulas’ (DAVIS, 2006).

Gaussian process regression is a statistical machine learning model that has gained
popularity among building modeling researchers only recently, given its ability to ’capture
non-linearity with more simplicity than Bayesian models or artificial neural networks’
(RASMUSSEN; WILLIAMS, 2006). The Gaussian process was proposed as a replace-
ment for supervised neural networks (MACKAY, 1997), due to its reasonably simple
implementation, as well as the small number of parameters to model (YOON; MOON,
2018). In the context of machine learning, Gaussian process refers to its use for Bayesian
inference. As stated by (GRAY; SCHMIDT, 2018), Gaussian processes can be used to
classify problems where the output is discrete, or even for regression problems, where
the output is continuous. The work developed by the authors used Gaussian processes
to carry out regression problems, specifically to predict a building’s zone temperature
and energy consumption over time. As stated by Carpenter, Woodbury e O’Neill (2018),
when compared to typical regression analysis, as for example, change-point, which has a
predetermined relationship between the dependent variable and the independent variables,
a GP model is non linear and relates the dependent variables, that is, y, to the independent
variables (x) through a covariance matrix and a mean function. For this regression, the
main assumption is that the output data can be seen as a multivariate Gaussian function.
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2.5.5 Studies creating stochastic models for occupant behavior based on measured data

Occupant behavior impacts the way energy is consumed in buildings, and has
become a growing topic of research, due to the need to investigate the factors that lead
and influence actions taken by users. Because it is necessary to reduce energy consumption,
there have been numerous studies on occupant behavior, trying to minimize the gap
observed between measured and simulated data. Designers, architects, engineers and
researchers need to improve the way energy consumption is calculated in buildings, and
considering occupant behavior is one way to achieve that. However, this poses a challenge,
due to the complexity and dynamic nature of behavior, that can be influenced by internal
and/or external, individual and contextual factors. Also, because the data is monitored
on site, the models created can be "locally" applied, that is, the scope of applicability
of such models can be limited by the location where the measurements took place. This
characteristic reinforces the need to create models for di�erent locations and climates, this
expanding their applicability.

Several researchers have developed models from measured data as a means to
provide more accurate input data on occupant behavior to achieve results showing less
discrepancy from the real data when simulating. The main sectors studied have been
residential and o�ce buildings, therefore these are presented in the following items.

2.5.5.1 Residential Buildings

Andersen et al. (2013) proposed a model to quantify the influence that environmental
factors have on occupants’ window opening behavior in residential buildings in Denmark.
The study measured 15 apartments from January to August 2008, recording the following
indoor environmental factors every 10 minutes: dry bulb temperature, relative humidity,
illuminance and CO2 concentration. The windows were monitored using sensors registering
open/closed. The authors used multivariate logistic regression and Akaike Information
Criterion (AIC) to create four models, which can be implemented into simulation tools,
increasing the validity of the simulation outputs.

Rijal, Humphreys e Nicol (2014) recorded measurements of indoor air temperature
and relative humidity in 121 residencies in the Kanto region of Japan for over 3 years.
The model was created using logistic regression, and the predicted data matched well the
measured one, meaning this model could be used in simulation tools.

Calì et al. (2016a) developed a study with the purpose of analyzing occupant
behavior regarding window opening in residencies, in order to investigate the drivers that
lead occupants to take action and interact with windows and how such actions can be
modeled. The measurements took place in three refurbished buildings in Southern Germany
for the period of one year. The variables recorded were air temperature, relative humidity,
CO2 concentration and volatile organic compounds, and the windows were monitored with
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sensors (open/closed). The statistical method applied in this study was logistic regression,
and the authors concluded that the occupants’ window opening behavior was driven by
activities that remove pollutants from the indoor air. The most common drivers registered
for window opening were time of the day and CO2 concentration, and for closing were
daily average outdoor temperature and also time of the day.

In a more recent study, Jones et al. (2017) also developed stochastic models of
window opening and closing behavior for UK residencies, using a range of indoor and
outdoor factors for di�erent seasons and time of day. The measurements took place in 10
residencies for a period of one year, recording at every 10 minutes data for air temperature
and relative humidity. The authors used multivariate logistic regression and AIC to create
the models, which, as concluded, can be used in simulation tools.

2.5.5.2 O�ce Buildings

The work by Fritsch et al. (1990) was the first attempt to create a stochastic model
to predict occupant behavior in regards to natural ventilation in o�ce buildings. They
performed measurements in 4 o�ces in the LESO test facility in Switzerland during a
heating season (October to May). They recorded the following indoor variables: room
temperature, wind speed, radiation and ambient temperature. They found that the outdoor
temperature acted as a driver for window opening and closing. Their model was developed
using Markov chains to predict window operation, however it is only valid for the winter
period.

Later, Nicol (2001) proposed the first coherent probability distribution to predict
the state of windows as logit functions for indoor and outdoor temperatures. As stated by
the author, this method assumes that the probability of an event happening increases as its
stimulus increases, or the intensity of it . The measuring campaigns took place in Pakistan,
the United Kingdom and five European countries, from 1993 to 1996. It is observed that
in most of the cases, the correlation with indoor temperature is similar to the one with
outdoor temperature, and in this study, Nicol recommends the use of outdoor temperature,
based on the fact that it is an input in any simulation tool, whereas indoor temperature is
an output. However, the author later reported that a more consistent predictor for the
use of windows was the indoor and not the outdoor temperature (Nicol; Humphreys, 2004
apud (HALDI; ROBINSON, 2009)).

Rijal et al. (2007) had as their objective the creation of a model to predict the
behavior of occupants for a given situation, in relation to window opening, and to incor-
porate such behavior in the modeling of a building in a computer simulation software to
asses the building’s performance for energy use and thermal comfort. The study took place
in 15 o�ce buildings in the United Kingdom from March 1996 to September 1997. The
model considered both indoor and outdoor temperatures, and a multiple logit distribution
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was derived to predict the probability of a window being opened. Among more specific con-
clusions, the authors state that when the algorithm is embedded in a simulation software,
it provides results otherwise not available when using more conventional methods.

Haldi; Robinson (2009), based on nearly seven years of continuous measurements,
investigated the influence of occupancy patterns, indoor temperature and outdoor vari-
ables on window opening and closing behavior. The measurements were recorded in o�ce
buildings in Switzerland. The authors tried di�erent modeling approaches, such as logistic
probability distribution, Markov chains and continuous-time random processes. Combina-
tions of the approaches were tested, and a hybrid model was selected to be implemented
in building simulation tools.

Zhang e Barrett (2012) developed a study focusing on investigating the drivers
that influence occupants to open windows, as shown by the proportion of windows opened.
The measurements took place in an o�ce building in She�eld, UK, from, January 2005 to
April 2006 and recorded variables such as, air temperature, relative humidity and wind
speed, among others. Using probit analysis, the authors concluded that window opening
behavior has a strong correlation with outdoor air temperature, season, time of day and
occupancy pattern.
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Study Location Units Variables Measured
Period

Interval Method

Andersen et al.
(2013)

Denmark 15 apts. Dry bulb temp, RH, Illumi-
nance, CO2

Jan to Aug
2008

10 min. Multivariate logistic
regression and AIC

Rijal,
Humphreys
e Nicol (2014)

Kanto
region,
Japan

121 resi-
dencies

indoor air temp and RH 3 years
(2010-
2013)

10 min. Logistic Regression

Calì et al.
(2016a)

Germany 60 apts. air temp, RH, CO2, volatile
organic compounds

1 year
(2012)

1 min. Logistic regression

Jones et al.
(2017)

UK 10 residen-
cies

air temp, RH, 1 year 10 min. multivariate logistic re-
gression and AIC

Fritsch et al.
(1990)

Switzerland 4 o�ces
(LESO)

room temp, wind speed, ra-
diation, ambient temp.

Heating
season
(Oct. to
May)

30 min. Markov Chain

Nicol (2001) Pakistan,
UK, Eu-
rope

25 build-
ings (ex-
isting
database)

air and globe temp., humid-
ity, air speed

1993 to
1996

Not speci-
fied

Logit function

Rijal et al.
(2007)

UK 15 o�ce
buildings

Temperature (and others,
not specified)

Mar 1996
to Sep 1997

Multiple logit distribu-
tion

Haldi e Robinson
(2009)

Lausanne,
Switzer-
land

O�ce
buildings

Occupancy, indoor and out-
door temp.

7 years Continuously Markov Chains and
continuous-time ran-
dom processes

Zhang e Barrett
(2012)

She�eld,
UK

O�ce
building

Air temp, RH, wind speed
(outdoor)

Jan 2005 to
Apr 2006

Hourly Probit analysis

Table 2: Summary of studies creating stochastic models



35

2.5.6 Conclusion

Numerous other studies have been developed in the field, mainly focusing on
residential and o�ce buildings, although there are studies on commercial and educational
buildings as well. Delzendeh et al. (2017) performed a review of research articles focusing on
the impact of occupants on building energy analysis, and concluded, among other findings,
that: the parameters that influence occupant behavior need a more multi-disciplinary
approach to better combine the e�ects of the di�erent areas that a�ect occupant behavior,
and; that although there are detailed methodologies being applied, there is still a need to
better translate and integrate the findings from the studies into the existing simulation
tools, presenting a challenge to researchers in this area.

2.6 Method

The study of occupant behavior is challenging, due to the fact that each occupant
may react in a di�erent manner to the same situation. This is a factor that causes discrep-
ancy between measured and simulated data on energy consumption, emphasizing the need
for more field studies, in an e�ort to collect data on occupant behavior and provide more
precise input data for simulations. Several studies have been conducted focusing on occu-
pant behavior and their impact on the indoor environment, with special attention being
given to the actions taken by users to control their environment to regain or achieve thermal
comfort. This research proposes a method to create an algorithm to be implemented in com-
puter simulation programs that better represent occupant behavior, in relation to window
opening and AC activation, in mixed-mode o�ce buildings. The method for the research
being conducted was developed following the guidelines provided by Shipworth e Huebner
(2018). It is composed of two initial stages entitled Development of Theoretical Model and
Definition of Units of analysis, population and scope, to establish the research’s model to be
built and its applicability. The main body of the method is divided into four main steps: (a)
buildings’ data collection and pre-test; (b) in situ measurements and data analysis; (c) sta-
tistical methods’ application and creation of algorithm; (d) algorithm’s validation and tests.

2.6.1 Development of Theoretical Model

The main objective of the research is to create an algorithm to predict occupant
behavior in relation to window opening/closing and AC activation/deactivation in mixed-
mode o�ce buildings. One of the objectives to be achieved during the process, is establishing
relationships between the variables being monitored, that is, the exterior environment,
the building (interior environment), occupant behavior and energy consumption. When
studying occupants in buildings, relevant concepts include temperature, comfort, glare,
productivity and adaptive response (SHIPWORTH; HUEBNER, 2018). Such concepts can
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be used to build a theoretical model of how occupants react and respond to their physical
environment.

It can be useful to make a distinction between concepts and constructs, the one
proposed by Markus (2008) defines concepts as the comprehension of all real and possible
occasions in a set of experiences in reality, and constructs as the occurrences of such in
a given population. Both can be considered the same thing when inserted in the same
population however, the distinction becomes relevant in international comparative work,
where concepts can transfer between populations, and constructs cannot (SHIPWORTH;
HUEBNER, 2018). In the area of occupant behavior, the distinction becomes especially
relevant due to the fact that this is a highly international area, and researchers can measure
the same concepts, but knowing how they are constructed and conducted demands taking
into consideration the di�erences in climate and culture. With the constructs being well
distinguished from the concepts, the process of determining how to measure such constructs
begins, which is further detailed in Pre-test (Item 2.6.3).

To aid in further specifying the relationships between the concepts being studied,
it is important to establish questions, such as; (a) what triggers occupants to open/close
windows and/or activate/deactivate AC?; (b) Do occupants open/close and/or activate
AC more frequently as indoor (or outdoor) temperature rises?; and (c) How di�erently do
occupants respond to environmental changes during each season and in between seasons
(transition periods)? From such questions, hypothesis can be drawn, as for example, as
outdoor temperature rises, so does the indoor temperature and the probability of occupants
closing windows and activating the AC is higher. To assist the researcher in establishing
such connections, Shipworth and Huebner (2018) suggest identifying the concepts to be
measured and how they link to each other. This is further assisted by the use of a graphical
representation, creating a map that leads to the theoretical model. Figure 5 represents
the theoretical model for the research in question, establishing links from the concepts
intended to be measured to the actions taken by the users according to the conditions
created by such measurands, and finally leading to energy use and/or thermal comfort in
a mixed-mode o�ce building scenario.
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Figure 5: Graphical representation of the relationships between concepts.
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2.6.2 Units of analysis, population and scope

Once the theoretical model is established, it is then necessary to define the scope
of its applicability, which requires a statement of the population of interest to which the
findings will apply (SHIPWORTH; HUEBNER, 2018). The population of interest can be
expressed as the unit of analysis that the model intends to represent, and what the data is
being collected about. In the context of this study, the unit of analysis is the mixed-mode
o�ce, which can be studied within a multistory building or a house, as long as it meets
the defined criteria (3). Because the mixed-mode o�ce is the unit of analysis in this study,
the population of interest and scope’s definition are also related to it. In regards to the
population of interest, the samples drawn for the study are taken from a population of
buildings found in the selected city for the study, São Carlos, in the state of São Paulo,
Brazil. As for the temporal scope, the study will be conducted during an entire year, that
is, it will encompass all four seasons. Therefore, the findings of this study will be restricted
to mixed-mode o�ces in a high-altitude tropical climate for summer, spring, winter and
fall.

2.6.3 (a) Buildings’ data collection and Pre-test

Buildings’ data collection: Sampling

As stated by Shipworth e Huebner (2018), there is a wide range of sampling
strategies that can be used. The “gold standard”, as the authors name it, is pure random
sampling. However, it is not always possible to attain the ideal case, and other sampling
strategies can be applied. In this study, a purposive sampling was used, in which “population
members are recruited based on certain characteristics considered useful to the study”
(SHIPWORTH; HUEBNER, 2018).

In this work, the population members can be understood as the mixed-mode o�ces
in the city of São Carlos, SP. A data collection was performed to create a database with
potential multistory buildings and houses, where the rooms were adapted to become o�ces,
that would meet the criteria and provide the necessary type of o�ces to be studied. The
initial data collection was performed using the work of Carrières (2007), which listed o�ce
buildings in the city of São Carlos, SP. From this starting point, the main criteria for this
study was established, that is, a range for the floor area (30m2 to 50m2), and the existence
of operable windows and air conditioning unit. As for the control of the operable windows
and the AC, the criteria was that users were free to operare either, and there were no
automation systems nor any indication that could inform the user’s decision as to which
action to take. Therefore, When analyzing the data collection made by Carrières (2007),
some buildings were excluded for not meeting the above-mentioned criteria. With the
remaining buildings, the specific criteria for this study was created, as shown in Table 3.

The specific criteria guaranteed the presence of operable windows as well as an AC
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Questions Expected Answers
Is there an AC unit? Yes
Are there operable windows? Yes
Does the user stay all day? Yes
Does the user operate the window(s)? Yes
Are the windows unobstructed? Yes
Type of o�ce Not medical
Activity Sedentary
Main equipment Computers and printers
Number of occupants 1 - 5

Table 3: Specific criteria for building selection

unit in each o�ce. The operable windows had to be unobstructed and operated by users,
therefore they were asked if they alternated using windows and the AC unit. Although
some o�ces did have unobstructed windows, the users reported that such windows were
never used, only the AC unit, and such units were not included in this study. As for
presence, the criteria questioned if the users remained all day in the o�ce, that is, if the
users occupied the o�ce during most of the reported working hours, from 9am to 12pm
and from 2pm to 6pm. Because there was no equipment to monitor presence, units where
users did not remain for the most part of the commonly reported working hours, were also
excluded from the database.

The common activity performed in the selected o�ces was sedentary and mainly
using a computer. Medical o�ces and alike were excluded, due to the di�erence in activities
performed, fluctuation on the number of users during the day and di�erence in equipment.
The o�ces selected only use computers and printers, which account for a specific load that
can be estimated when simulating. The number of occupants varied from 1 to 5, given the
di�culty to select all o�ces with the same amount of occupants. The number of occupants
in each o�ce can influence the way users behave, and this will have to be taken into
consideration when building the model. Another factor that will have to be accounted for
when creating the algorithm is the way the sampling was conducted. Because it could not
be performed using the "golden standard", it might have an influence in the algorithm’s
performance.

Pre-test

The pre-test was designed as a prior step to the actual monitoring campaign, with
the objectives of (a) determining how best to measure the selected constructs (opera-
tionalizing constructs (SHIPWORTH; HUEBNER, 2018)) and; (b) testing the selected
equipment (Table 4) and learning how to set up each one of them. The location for the
equipment was also tested, and details, such as positioning on the window, type of tape to
use and how to fix the equipment on the AC unit were all verified and tested, so there were
as few errors as possible during the measuring periods. The software for each equipment
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was also verified and updated, and all the cables for downloading and uploading data
were verified and tested. The pre-test also allowed to test for equipment malfunction, thus
contributing to minimizing errors during the measuring campaign period. The variables
monitored by each equipment are further detailed in Item 2.6.4 on Table 6.

Quantity Equipment Variable Model Brand
03 Air Temp. + RH AC monitoring HOBO H08-003-02 Onset
03 Air Temp. + RH Indoor environment 175H1 Testo
03 State data logger Window monitoring HOBO UX90-001 Onset

Table 4: Equipment for measuring indoor variables

The temporal sampling established in the pre-test to measure indoor temperature
and relative humidity was set at a 10-minute intervals, based on previous studies (ANDER-
SEN et al., 2013; JONES et al., 2017; RIJAL; HUMPHREYS; NICOL, 2014). The AC
temperature was initially also set at a 10-minute interval, then tested at 5-minute intervals.
The 10-minute interval was then established, since the temperature di�erence recorded
between the 5-minute intervals was not significantly di�erent from the ones recorded on
the 10-minute interval trial. Also, because the other indoor variables being monitored were
established at 10-minute intervals, standardizing all intervals was best for posterior data
treatment.

The windows were not monitored based on time intervals; a state logger was used
to record the changes in state. The equipment continually logged every event (date and
time) when there was a change in state. The pre-test allowed a better comprehension of
how sensitive this equipment is to displacement. The state logger is composed of a sensor
and a magnet; when the sensor is close to the magnet, it records as closed, and when it is
away from the magnet, as open. The o�ce room where the pre-test was conducted had
top-hung windows, and the sensor was attached to the fixed window frame with a velcro
band, while the magnet was attached to the movable part with a tape (Figure 6a). The
data from the pre-test showed that the windows remained open the entire time, while the
users reported that the common routine was that they opened the windows upon arrival,
closed when using the AC and always closed at departure. It was possible to conclude that
the sensor displaced by very little, and thus the minimal distance between the sensor and
the magnet a�ected the recording of the closed periods, showing as always open. These
details were all taken into consideration and attended to when the measuring campaign
began, to minimize errors.

The positioning of the equipment on the AC was done by attaching the equipment
on the AC’s flap using a plastic clamp (Figure 6b), and the equipment monitoring the
indoor air temperature and relative humidity was positioned away from heat sources
(windows and computers) at approximately 1.6m high (Figure 6c). Figure 7 shows the
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floor plan of the o�ce monitored during the pre-test, the equipment location within the
unit and number of occupants. Figure 8 shows the location of the monitored building and
the meteorological station. The approximate distance between the two locations is of 5Km.

Figure 6: Equipment positioning in monitored o�ce

Figure 7: Floor plan of monitored o�ce. No scale.

Figure 8: Location of monitored building and meteorological Station. Google Maps. No
scale.
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2.6.4 (b) In situ measurements and Data Analysis

A descriptive, or correlational design, is the basis of studies on the impact of
occupant behavior in building energy consumption. It is when data is gathered using
sensors, be they installed or virtual, or if the data are gathered for other purposes and
possibly enriched with paper or electronically surveys, by use of smart-phones or computers
(SHIPWORTH; HUEBNER, 2018). Once the data are collected, they are analyzed in
search of correlations between the variables. This type of study allows researchers to
understand the relationships in the data, but not state that a change in one variable is
the cause for a change in another. It is common to relate, for example, window opening
behavior to high indoor temperature, or to control the indoor air quality. However, as
described by Fabi et al. (2012), there are di�erent types of driving factors, which can be
alternative reasons for users to take actions, such as hour of day, routine, lifestyle or safety,
to name a few.

There are many descriptive research designs; the one adopted for this specific work
was the cross-sectional design. As described by Shipworth and Huebner (2018), this design
is one that collects data at a specific point in time covering a range of units of analysis,
such as occupants and buildings, for example. This type of design can be conducted once
or several times at di�erent moments, thus creating a repeat cross-sectional design. This
design di�ers from the longitudinal survey in the sense that in the latter, the same people
are measured repeatedly through time, as opposed to the cross-sectional, where a new
representative sample from the population is generated each time the survey is conducted.

In Situ Measurements

The measuring campaign for this study is scheduled to last 12 months, from
November/2017 to October/2018. The intention is to measure during all four seasons,
thus broadening its applicability scope. As for the location of the study, measurements are
being conducted in the city of São Carlos, in the state of São Paulo, Brazil (Figure 9).
According to the Koppen climate classification, São Carlos is a city of a high-altitude
tropical climate, located at latitude 22°02’ South at 863 meters (Cwa, for the Koppen
classification; (CEPAGRI, 2018)), characterized by a generally non-rigorous dry winter
and moderately rainy and hot summer.

According to the Brazilian Standard 15 220-3 (ABNT, 2005), Brazil is divided into
eight bioclimatic zones, and São Carlos is located in Zone 04, representing an intermediate
climate. Table 5 presents specific monthly characteristics for the city of São Carlos regarding
dry bulb temperature, relative humidity and wind speed using the weather data provided
by Roriz (2012).

Because there were no equipment to monitor presence, during the Pre-test, users
informed their working hours and reported when unusual activities or occupancy occurred.
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Figure 9: Brazilian national territory and São Carlos’ location within the state of São
Paulo.

Month DBT (°C) RH (%) Wind Speed (m/s)
January 21 79 2
February 22 77 2

March 21 75 2
April 20 78 1
May 17 73 1
June 17 74 2
July 17 54 2

August 19 59 2
September 19 59 2
October 22 67 2

November 22 70 2
December 21 73 2

Table 5: Climatic characteristics for São Carlos, SP. Adapted from Climate Consultant.

This policy was also established for the remainder of the measuring period. If and when
there are any unusual activities or if a user works during the weekend or after hours, for
example, one of the occupants was designated as a point of contact in each o�ce to report
such occasions to be included in the data collection. If there are no uncommon activities,
it is assumed that the occupied period is from Monday to Friday, from 9 am to 12 pm
and from 2 pm to 6 pm. The measurements’ schedule was designed intentionally avoiding
national holidays, as to minimize the gaps in the data collection.

Because all the equipment and measuring intervals were previously tested, as stated
in Pre-test (Item 2.6.3), the variables being measured in this study were established and
are listed in Table 6 with their respective units.

These variables were selected based on other field studies in the literature (RIJAL;
HUMPHREYS; NICOL, 2014; HALDI; ROBINSON, 2009; ZHANG; BARRETT, 2012).
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The variables that show greater influence on occupants’ actions, are indoor and outdoor
temperatures and relative humidity, and therefore are always monitored. This study
followed this pattern, not including wind speed and CO2, variables that are also recurring
but not included in all studies. Neves et al. (2018) performed a field monitoring in São
Paulo, SP, Brazil, and reported very low wind speed rates even when windows were open
(maximum registered value of 0.17 m/s). From the observations during this study, the
authors concluded that such low values were a consequence of the o�ces being unilaterally
ventilated, as is the case of the monitored o�ces in the present research. Vecchi et al.
(2017) reported very similar results when performing a study for the same type of building
in Florianópolis, Brazil. Also, Haldi e Robinson (2009) stated that window operation was
correlated with outdoor air temperature, and not wind speed.

As for the CO2 monitoring, it is mostly monitored in residencies (ANDERSEN et
al., 2013; CALÌ et al., 2016a), since its levels can be higher within this type of building
due to the activities performed in it, such as cooking, for instance. The higher levels of
CO2 occasioned by the activities associated with the type of building can be a driver to
occupants taking actions, which may not be the case in o�ces. Also, because this study
focuses on mixed-mode buildings with a maximum of five occupants in each unit, it is
unlikely that CO2 levels become high enough to trigger a response in users.

The outdoor variables were taken from a meteorological station in the city of São
Carlos, with a maximum distance of 7 Km from the measured buildings, except for one
unit that is more distant from the perimeter containing most buildings (Figure 10). This
building is approximately 10 Km away from the meteorological station.

Variables Units
Indoor
Temperature °C
Relative Humidity %
Window opening -
AC Activation °C
Outdoor 1

Temperature °C
Global Solar Radiation (vertical) kJ/m2

Air speed m/s
Relative Humidity %
Rainfall Index mm
1 Hourly measurements at Meteorological station A711
OMM Code: 86845 (www.inmet.gov.br/sonabra)

Table 6: Measured Indoor and Outdoor Variables

The study targeted to measure a total of 10 units in each period, repeating the
measurements in the same 10 units during each designated period, though occupants in
these o�ces may not be the same at all times. There is the possibility that the monitored
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Figure 10: Monitored buildings’ location within the city of São Carlos, SP. Google Maps.

o�ces are also not the same. If one or more units become unavailable during one of the
monitoring periods, other o�ces will be included and the total amount of 10 units will be
maintained. For the summer period, a total of 6 buildings was selected, and in some of
the buildings more than one unit was monitored. Table 7 lists all the buildings, with the
amount of units measured in each one and their locations.

Number of units Building’s Name Address
02 Bandeirantes R. Conde do Pinhal, 2185
01 Rotary Club R. Conde do Pinhal, 2265
01 Luciano Zanollo R.D. Alexandrina, 966
02 House R. José Rodrigues Sampaio, 47
03 Racz Center Av. São Carlos, 2205
01 Tríade Passeio dos Flamboyants, 60

Table 7: Buildings locations and amount of units measured within them.

Some of the measured variables record at di�erent time intervals than others, due
to the specifications of each equipment. The window state logger and the meteorological
station record variables at di�erent time intervals than the other equipment being used.
Because of this di�erence, some data are treated so that the entire set follows the established
10-minute interval.

Window opening and AC activation are the two main actions being monitored and
observed in this study. The equipment recording window opening and closing is a state
logger that registers when one of these events occur. As established in the Pre-test section,
this equipment was not programmed to measure at given time intervals, but rather when
there was a change in state. The equipment is binary and programmed to register an
opening event as zero (0) and a closing event as one (1). When reading the collected data,
the interpretation for such is that when there is a date and time with a given event, zero for
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example, it is understood that the window was opened, and that state only changes when
the next entry records it. Consequently, the next state will read one (1) and that is read
as closed, and so on for the entire monitored period. Because the other indoor variables
are being monitored at 10-minute intervals, the window state data has to be treated to fill
the 10-minute interval rows respective to the readings on the other equipment, as shown
in Figure 11, so it shows the entire period when the window remained open or close.

Figure 11: Data treatment: Adapting to di�erent intervals

The equipment registering the AC temperature follows the 10-minute interval
specified in the Pre-test. Although there is no need to treat these data to fit the required
interval, it is necessary to establish a guideline for its interpretation. Because the equipment
registers temperature and not the date and time when the AC unit was activated or
deactivated, it is necessary to analyze the data set for the measured period and identify
when temperature drops occurred, thus indicating AC activation.

Figure 12 depicts an excerpt from the spreadsheet with the data collected from
one of the monitored units. The portion highlighted in blue shows when the temperature
is stable and close to the indoor temperature recorded, and thus interpreted as Air
Conditioning Deactivated (AC/OFF). When the temperature begins to drop and oscillate
within lower values (darker gray highlighted portion), it can be read as Air Conditioning
Activated (AC/ON). And when there is an increase in temperature and it begins to
stabilize again (lighter gray highlight), one can interpret it as the AC/OFF again, with
stable temperature readings in the blue portion. It can also be seen that the AC was
activated during some of the warmest hours of the day, given it is a set of data taken from
the readings from the end of November, which is very close to summer and already with
high temperatures. It is also possible to see that the AC was deactivated at the end of the
day, possibly when the users (or the last user) left the o�ce.

Because there is a large amount of data, it is not viable to identify such periods only
by looking at the collected data on spreadsheets. In an e�ort to identify the occurrence of
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Figure 12: Excerpt from Air Conditioning spreadsheet data

the above-mentioned situation and the periods when the AC remained ON or OFF, the
following equation was applied to the data set pertaining AC entries:

(Tn ≠ T (n ≠ 1))/10 (2.1)

Where Tn is the nth temperature in a set of temperatures, regarding the equipment
positioned on the AC flap, divided by 10 (given the established 10-minute interval). If
the module of this value is greater than 0.3, it means that the AC was operated. It is
important to highlight that this procedure identifies when the AC was operated, and not
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necessarily activated. That is, in most cases, when the AC was operated was to activate
it, according to the cross referencing of the data. However, there are cases that indicate
operation within the period when the AC is already activated, and those are read as solely
operation and not activation.

As for the outdoor variables, the meteorological station is set by the National
Meteorology Institute (INMET), and provides the hourly values for each variable. For
some of them, such as temperature and relative humidity, the equipment records an
instantaneous measurement for each hour, for example at 9:00, and several measurements
within that given hour, the amount varying depending on the equipment being used. The
data provided by the institute for each variable are then, the instantaneous value, the
maximum and the minimum. Once again, these data need to be treated to be used in this
study, because of the established time interval for the remaining variables. The criteria
applied to this was to use the instantaneous value and linearly decrease or increase it (at
10-minute intervals) to match the next hour’s instantaneous value, thus providing the
same measuring interval as the other variables being recorded in the study.

Data Analysis

The data collection is divided into four main measuring periods, corresponding to
each season. Two transition periods are scheduled to be monitored; from summer to fall
(May) and from winter to spring (August). During the 12-month measuring period, when a
data subset is collected, one entire season, for example, a preliminary data analysis will be
conducted on such subset. The objective of this preliminary analysis of each data set is to
identify which of the measured and observed variables are influencing occupant behavior,
related to window opening and AC activation, and possibly how they are influencing it. By
analyzing the data, the intention is to relate the driving factors identified in the Literature
Review to the actions being studied in this research.

The first step to this analysis is to characterize each of the monitored o�ces,
describing its key features as listed on Table 8, as well as presenting their respective floor
plans. To aid in this analysis, a graph combining indoor, outdoor and AC temperatures,
and window opening/closing periods is presented for each room. In addition, histograms
portraying the frequency of window opening and AC activation by indoor temperature
and hour of day are also presented.

By combining the information from the room’s characterization and the graphs,
it is possible to create a general overview of how each of the measured rooms perform
di�erently and how users respond to the building’s characteristics, in combination with
their personal preferences and routine. The following step on the data analysis is to consider
how the observed factors (those not measured), such as unobstructed view and privacy,
can influence occupant behavior related to window opening and AC activation. The graphs
aid in the analysis of the measured variables and enables further analysis, allowing to infer
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Items observed for o�ce characterization
Number of windows

Number of occupants
Type of window

Blinds
External/Internal wall

View
AC position

Window facade facing N,S,E,W
Unilateral or Cross ventilation

O�ce’s area
Multistory Buildings (and storey) or House

Table 8: O�ce rooms’ characterization items

how routine and hour of day, for example, influence users’ actions. The factors that are not
monitored nor observed, will be taken into account when the measuring campaign is over.

Once the 12-month period finishes, questionnaires will be applied in an e�ort to
better understand occupants’ behavior. The objective of the questionnaires is to obtain
information that can further explain behaviors observed in the collected data that are
not following patterns (reacting to indoor or outdoor temperature, for example), and
cannot be explained by the observed variables either. Inactions, such as not activating the
AC when indoor and/or outdoor temperatures are high, cannot be explained by solely
analyzing the collected data, hence the use of questionnaires post measuring period. The
following questions are options to be included in the questionnaire, and user’s can rate
each given option with 0 (not influential), 1 (somewhat influential), 2 (influential) and 3
(highly influential).

How influential are the following items on your decision to:
Open Window Close Window Activate AC Deactivate AC

Noise
Pollution

Odour
Glare (blinds up)
Window position

AC position
Wind speed

Health

Table 9: Possible questionnaire to be applied post-monitoring period

By analyzing the data subsets during the 12-month period, it is possible to better
understand the common driving factors among most users during each season, as well as
to identify the di�erent behaviors that users may show that can a�ect energy consumption.
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Also, the analysis enables the identification of di�erent actions under similar circumstances,
portraying di�erent user profiles.

The characterization of each o�ce room combined with the analysis of occupants’
behavior and the collected data, allows some suggestions to improve the spaces. For
instance, it enables to identify if an o�ce could benefit from a di�erent envelope material,
or if the AC unit seems insu�cient for the room, or even if nocturnal ventilation is
recommended. All of which can also be explanations for some of the observed behaviors.

The data analysis of each period and identifying the factors the most influence or
drive users to certain actions will provide a better understanding of the complete data
set once the measuring campaign ends. The data analysis conducted on the subsets will
provide insight to the actions presenting a higher probability of leading to window opening
or AC activation, which can be helpful when analyzing the entire data set.

2.6.5 (c) Statistical Methods’ Application and Creation of algorithm

The definition of the statistical method, or a combination of them, to be applied to
create the algorithm, can only be defined once the data set is complete. Because the data
is still being collected, several methods that are commonly used in this type of study have
been presented in the Literature Review (item 2.5.4) as viable options for this research.

2.6.6 (d) Algorithm’s validation and test

Validation

Validation and verification are procedures employed to determine a realistic and
confidence expectations (YAN et al., 2018). For this research area, specifically, Yan et al.
(2015) describe that validation can include a careful collection and preparation of su�cient
and representative data, and a systematic separation of subsets to (a) generate a model
and (b) to evaluate the model and generate a clear discussion of its limitations based on
statistical significance and application.

The validation method applied to each study can vary according to the model
obtained after applying the selected statistical method. Because the model in this study has
not yet been created, the preliminary validation method selected is a comparison between
the observed (in situ measurements) and simulated data, regarding window opening and
AC activation, as employed in previous similar studies (FABI; ANDERSEN; CORGNATI,
2015).

For this comparison, two simulations will be run on EnergyPlus using a mixed-mode
o�ce and the same input data, except for occupant behavior. The output data will be
energy consumption for both runs. A specific scenario will be chosen, where details such
as season, number of occupants and occupation schedule, for example, will be set and
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kept for both. Simulation (a) will use the measured occupant behavior data as input, and
Simulation (b) will use the algorithm. Because the output data selected will be the same,
it will possible to compare the results and assess the algorithm’s accuracy in identifying
the most probable actions taken by users given the set of variables considered and how
that impacts energy consumption as opposed to the actual measured data.

EnergyPlus

EnergyPlus is an open source program that models heating, ventilation, cooling,
lighting, water use and renewable energy generation among other building energy flows
it is supported by the Department of Energy (DOE) of the United States and validated
by ASHRAE. The program includes some capabilities that can be considered innovative,
such as sub-hourly time-steps, natural ventilation and thermal comfort.

It is a reliable program, since its heat balance approach has the potential to be
the most accurate method to solve the heating and cooling loads, because it accounts for
all energy flows in their most fundamental form and does not make simplifications to its
solution technique (WANG; JOHN, 2016). Interfaces and modules were created to make
the program easier to use in engineering.

Test

Once the algorithm is validated and its reliability established, a test will be
conducted to use the algorithm to study the impact of di�erent users within the same
scenario. As stated by Shi e Zhao (2016), user behavior can vary from one country to
another.

The test will be divided into four distinct simulations, all using the same mixed-
mode o�ce model and the same constructive materials of a standard mixed-mode o�ce, as
the ones where the data collection took place. The model and its constructive characteristics
will be maintained the same in all simulations. The input data that will vary in this test
will be the weather files and the algorithms for user behavior. The weather files to be used
as input data will be from; (a) São Carlos, SP, Brazil and; (b) City to be determined. The
algorithms will be; (a) Brazilian user behavior developed in this study and; (b) Foreign
user behavior (matching the country from which the weather file will be used). Table 10
lists the data combinations configured to enable comparing the results and relate them to
energy consumption in mixed-mode o�ce buildings.

Simulation # Weather file Algorithm Mixed-mode o�ce
1 São Carlos, SP BR Algorithm Kept the

same for
all simula-
tions

2 São Carlos, SP Foreign Algorithm
3 To be determined BR Algorithm
4 To be determined Foreign Algorithm

Table 10: Input data combination for EnergyPlus simulations



52

The output data from simulations 1 and 4 will be the basis for comparison for
simulations 2 and 3, respectively. This test intends to observe the di�erent impacts that
users from di�erent countries can have in the same building. That is, the foreign occupant
behavior will be analyzed within a Brazilian climate context and vice versa.

2.7 Partial Results

The observations made in this section pertain a period of summer, from Novem-
ber/2017 to March/2018 and one week measured in April, which could be considered a
transition period, though temperatures during the day were still high. Table 11 lists the
o�ces and their respective measuring periods. In this section, there is a characterization of
each monitored o�ce, a general graph combining indoor, outdoor and AC temperatures and
window operation over the measured period. In addition, three histograms are presented
for each unit showing; (1) frequency of window opening and AC activation in relation to
indoor temperature, (2) frequency of window opening and AC activation in relation to
outdoor temperature and; (3) frequency of opened window and activated AC for each
half-hour period during the working hours.

The equipment shown on the floor plans indicate their location during the measured
period.

Measuring Period
2017 2018

O�ce # Nov Dec Jan Feb Mar Apr
01 From 27 To 08
02 From 27 To 08
03 From 27 To 08
04 11 to 15 17 to 25
05 17 to 25 From 28 To 06
06 11 to 22
07 From 25 To 08
08 From 25 To 08
09 11 to 22
10 06 to 21

Table 11: Measuring period of each o�ce (Summer)

O�ce 1

This unit is in the building farthest from the meteorological station, counts with
the largest area of the monitored o�ces and it is on the 9th floor, which is the last floor
on the building. The space is subdivided into a director’s o�ce, meeting area and an
area for the workstations, however there are no doors fully closing o� any of these spaces,
there are only walls dividing them. Because there is a meeting room integrated with the
workstations’ area, the number of users in the o�ce may vary sporadically. There are six
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windows in this unit, and the state logger was placed on the window next to the icon as
indicated in Figure 13.

Figure 13: O�ce 1 floor plan. No scale.

AC Operation

Figure 14 shows that the AC was activated during most of the working hours,
with brief periods of open windows, during which it was deactivated. For the most
part, the indoor temperature was higher than the outdoor temperature, and it did not
significantly decrease even when the AC was activated. There were periods when the
outdoor temperature exceeded the indoor temperature, and that event was combined with
the AC being activated and remaining in that state until the end of the working hours.
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Figure 14: O�ce 1: Monitored data

Window Operation

Windows were mostly opened when the outdoor temperature was lower than the
indoor temperature. They remained in that state while the outdoor temperature remained
at least 5°C lower than the indoor temperature. Once the outdoor temperature began to
rise and got close to, or exceed the indoor temperature, windows were closed, combined
with AC activation. Figure 17 shows that the highest frequency of a period of open windows
was around 9:30 am to 10 am, when the outdoor temperature was still increasing, and
met, most times exceeding, the indoor temperature around noon, when windows were then
closed.

Indoor and Outdoor Temperatures

Figure 15 presents the frequency of the studied actions by indoor temperature. It

Camila Anchieta
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Figure 15: O�ce 1: Histogram 1 - Frequency of actions by indoor temperature

Figure 16: O�ce 1: Histogram 2- Frequency of actions by outdoor temperature

can be seen that in this o�ce, occupants made use of natural ventilation when the indoor
temperature was at 23°C. As it increased and reached 24.5°C, the AC was activated. As for
the AC, its highest activation frequencies were at 25 and 26°C, mostly combined with one
or zero window opening event. Figure 16 plots actions’ frequency and outdoor temperature.
As previously stated, when the outdoor temperature was low, 16 to 19.5°C, windows were
opened. As it reached 20°C, the AC was activated with a high frequency, as opposed to no
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Figure 17: O�ce 1: Histogram 3 - Relative frequency of actions by period

window opening at this temperature. Higher frequency of AC activation can also be seen
when the outdoor temperature reached close to 25°C, although there was some window
opening action, however at a lower frequency.

O�ce 2

O�ce 2 is occupied by two female users, one of which stays all day and the other
occupies the room some days during the week. The o�ce counts with a sliding window
that gives access to a small balcony, and the glass on the window is covered with a gray
reflexive glass film. The exterior wall indicated on this unit is white.

AC Operation

Figure 19 shows that in this unit the AC was activated when the outdoor temper-
ature met or exceeded the indoor temperature. It is also possible to notice the AC was
activated several times while the window was open. Another phenomenon that can be
noticed in this figure is that when the AC was activated, even when the windows remained
open, there was a significant decrease in the indoor temperature. The Ac’s e�ciency in
cooling the room can be better noticed on December 5, when the window was open and
the AC was activated, causing the indoor temperature to decrease. After a period of
activated AC, it was deactivated and the indoor temperature quickly increased, due to the
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Figure 18: O�ce 2 floor plan. No scale.

elevated outdoor temperature combined with the open window. Shortly after the quick
indoor temperature increase, the user activated the AC once again, probably at a slightly
higher temperature, causing the indoor temperature to decrease once more. Most likely,
this scenario remained until the end of the working hours, when the AC was deactivated
and the window closed.

Window Operation

This unit shows long periods of open window, however, some of these periods
coincide with the AC being activated. Only during some of the activated AC periods the
window was closed. On December 6, the window was closed during the period when the
AC was activated, which coincides with the outdoor temperature rising (Figure 19). By
closing the window, the indoor temperature decreased, and the window remained closed
until the end of the working hours.

Indoor and Outdoor Temperatures

Figure 20 shows that there was a higher frequency of window opening when the
indoor temperature was around 24 and 24.6°C, at which point there was only one AC
activation. The AC was mostly activated when the indoor temperature exceeded 24.6°C
and then again when it reached between 26°C and 27°C. Figure 21 depicts the ideal
behavior in relation to the outdoor temperature, except for one window opening event.
The highest window opening frequencies were displayed between 16 to 23°C, making use
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Figure 19: O�ce 2: Monitored data

of natural ventilation when the outdoor temperature was lower than the indoor. When
the temperature rose above 23°C, the frequency of window opening was zero (except
for one event), and the frequency of AC activation increased, showing the influence of
outdoor temperature in users in this o�ce. As for the periods when each action was taken,
they coincide with lower (morning) and higher (afternoon) temperatures, using natural
ventilation and AC, respectively (Figure 22).

O�ce 3

O�ce 3 is occupied by one female user. There is a small waiting area integrated to
it, and at times there may be one or more occupants in the space for a short period. The
user is positioned with her back to the window, facing the door to the elevators’ hall.

AC Operation

Camila Anchieta
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Figure 20: O�ce 2: Histogram 1 - Frequency of actions by indoor temperature

Figure 21: O�ce 2: Histogram 2- Frequency of actions by outdoor temperature

Figure 24 shows that there was no AC activation in this o�ce during the entire
monitored period. The AC remained deactivated even when the indoor temperature reached
25°C, or above, and the outdoor temperature was registered close to, or exceeding, 30°C.

Window Operation

In this unit there was only window operation. Almost every morning during the
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Figure 22: O�ce 2: Histogram 3 - Relative frequency of actions by period

monitored period the window was opened around 8 am, remaining in that state all morning,
and at times until the end of the day (Figure 24). In the morning, when the window was
opened, the outdoor temperature was around 17°C. It gradually increased during the
morning and reached the indoor temperature at about 25°C around noon. Within the
prolonged open window periods, there were very brief periods of closed window. This can
be exemplified by looking at December 4, when the window was opened at 8 am and
remained open until almost 6 pm, except for 20 minutes, from 2:20 pm to 2:40 pm. This
behavior was repeated a few other times over the monitored period, and some reasons for
such behavior could be that it rained, given the season, or that the wind speed was high.

Indoor and Outdoor Temperatures

Because there was no AC activation during the monitored period, all histograms
present the frequency of window operation only. This unit exemplifies the di�erence in
user preference for indoor temperature; the occupant used solely natural ventilation at
all times, showing a higher frequency of window opening when the indoor temperature
reached 24.5°C (Figure 25, which is coincidental with a higher AC activation frequency in
most units. The second highest window opening frequency was around 26°C, depicting
this user’s tolerance for higher temperatures.
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Figure 23: O�ce 3 floor plan. No scale.

As shown in Figure 24, the highest outdoor temperatures were during the afternoon,
and Figure 27 identifies that the period with a higher frequency of open window was
the afternoon, confirming that the user kept the window open mostly when the outdoor
temperature was elevated, and the indoor temperature around 25°C.

O�ce 4

O�ces 4 and 5 are in the same building, a detached ground floor house, where
there are three o�ces in total, each occupied by one user. The house was adapted for the
bedrooms and living/dining rooms to become o�ces. The waiting room is separated from
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Figure 24: O�ce 3: Monitored data

this o�ce, however its door remains open to such room. As indicated in Figure 28, this
room was classified as having its view partially obstructed. That is because the house is
surrounded by walls, and even thought it allows to ventilate the rooms, the view can be
considered somewhat obstructed by the wall.

The measuring period for o�ces 4 and 5 was broken down into two separate weeks,
as opposed to two continuous weekas, as the other o�ces.

AC Operation

Figures 29 and 30 shows that the AC was activated when the outdoor temperature
was at or above 25°C. However, it is possible to see that the AC was probably not activated
at a very low temperature, since the registered temperatures on the equipment positioned
on the AC flap did not present a drastic temperature decrease, but rather a very slight

Camila Anchieta
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Figure 25: O�ce 3: Histogram 1 - Frequency of actions by indoor temperature

Figure 26: O�ce 3: Histogram 2- Frequency of actions by outdoor temperature

Figure 27: O�ce 3: Histogram 3 - Relative frequency of actions by period

one, accompanied by a decrease on the indoor temperature as well. On the other hand, the
deactivation could be identified at the end of the working hours, around 5:30 pm, when
there was an increase in both temperatures (AC and indoor). One event, on December 11,
suggests that the AC was activated at a much lower temperature than the other registered
events, since the AC temperature in Figure 29 for this day at about 10 am significantly
decreased, consequently decreasing the indoor temperature to 25°C. About 20 minutes
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Figure 28: O�ce 4 floor plan. No scale.

after the AC was activated, the window was closed, and the AC and indoor temperatures
increased, suggesting that the user changed the temperature on the AC unit to maintain
the indoor temperature around 25°C.

Window Operation

This user alternated between the use of natural ventilation and air conditioning.
The window was always opened in the morning around 8 am, which combines arrival and
outdoor temperature about 5°C lower than indoor temperature. Once the window was
opened in the morning, it remained in this state during this period, and was closed around
noon, when the outdoor and indoor temperatures increased. There were some events, such
as on January 22, when the window was opened in the afternoon and remained in this
state until the end of the working hours, even though the outdoor temperature reached
30°C and the indoor was above 25°C.

Indoor and Outdoor Temperatures

As shown in Figures 31 and 32, the occupant made use of natural ventilation
when indoor and outdoor temperatures were lower in relation to the values within the
measured period, that being between 24 and 26°C and 17 and 23°C, respectively. As for AC
activation, it was complementary to the window opening behavior, as the user activated
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Figure 29: O�ce 4: Monitored data (December 11 to 15)

the AC when indoor temperatures were between 27 and 29°C and outdoor between 22
and 30°C, with higher frequencies observed between 22-23°C and 28-29°C. The lower
temperatures occurred in the morning, whereas the higher ones, in the afternoon, as can be
seen in Figure 33, where the frequency period of opened window is greater in the morning,
and for the AC in the afternoon.

O�ce 5

O�ce 5 is in the same house as o�ce 4. However, there are sliding external blinds
on the window in this unit. This feature caused some incongruence on the window state
logger readings, because the user closed the blinds and not the glazed portion of the
window, where the equipment was positioned. Therefore, the window was registered as
open overnight from April 4 to 5 (Figure 36), even though the external blinds were closed

Camila Anchieta
https://drive.google.com/open?id=1K0VjMWTLactYfQz-tqVsf-mxvd3IMMGV



66

Figure 30: O�ce 4: Monitored data (January 17 to 25)

and the o�ce unoccupied. Another unusual activity reported in this unit is that a co-worker
worked on a Saturday and used this o�ce; opened the window but did not close the glazed
portion. Therefore, once again, the equipment registered an open window over the weekend
(January 20 and 21 - Figure 35), when in fact it was open only during a small portion of
Saturday.

There were two measuring periods (one week each) for this unit as well, one of
them being in April.

AC Operation

Figures 35 and 36 show that the AC was mostly activated in the afternoon, when
the outdoor temperature was close to or exceed 30°C, or when the outdoor temperature
reached values close to the indoor temperature. Unlike the other user in the same house,

Camila Anchieta
https://drive.google.com/open?id=1K0VjMWTLactYfQz-tqVsf-mxvd3IMMGV



67

Figure 31: O�ce 4: Histogram 1 - Frequency of actions by indoor temperature

Figure 32: O�ce 4: Histogram 2- Frequency of actions by outdoor temperature

the data suggests that this user activated the AC at a lower temperature than the one used
in O�ce 4. The AC was mostly activated when the windows were closed, but there was
an afternoon period (January 24 - Figure 35) that shows the air conditioning being used
while the window was open. This specific AC activation presented very low temperatures
registered on the AC unit, combined with very high outdoor temperature (close to 30°C).
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Figure 33: O�ce 4: Histogram 3 - Relative frequency of actions by period

Window Operation

Window operation in this unit followed the same pattern as the one identified for the
previous units. The user opened the window in the morning, while the outdoor temperature
was around 5°C lower than the indoor temperature, at 20°C and 25°C, respectively, likely
coinciding with arrival. As the outdoor temperature rose and its value reached that of
the indoor temperature or exceeded it, the window was closed and the AC activated.
However, Figure 36 shows, on April 5, that when the outdoor temperature was about 10°C
below the indoor temperature, the window was closed and the AC remained deactivated.
Later on that same day the outdoor temperature increase about 10°C, causing the indoor
temperature to also increase, however at a much lower rate, and the window remained
closed and the AC deactivated.

Indoor and Outdoor Temperatures

The second week that composed the measuring period for this o�ce was during
April, when temperatures during the day reached 25°C and sometimes exceeded it by
one or two degrees, di�ering from January, when the outdoor temperature during the
afternoon reached 30°C, and sometimes exceeded it. As a consequence, during the first
measured period (Figure 35), the user activated the AC more than on the second period
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Figure 34: O�ce 5 floor plan. No scale.

(Figure 36). On the latter, there were days when only natural ventilation was used.

The histograms for this unit combined the data for both periods. As shown in
Figure 39, the AC was activated on the afternoon period with more frequency, which is
in accordance with the higher outdoor temperatures in January for this time of the day.
As for the window operation, it shows a slightly di�erent frequency distribution than the
other units, since it presents some low frequency of opened windows during the entire
day. The highest window opening frequency period is between 8 and 8:30 am, which is
coincidental with arrival, and it is likely to have happened on most days. The lowest
frequencies throughout the entire day are likely to refer to the April period of monitoring,
since the outdoor temperature remained around 25°C and the window remained open
during all day (Figure 36).

It can be inferred that this user operates the AC in response to outdoor temperature,
since it is possible to see in Figures 35 and 36 that the indoor temperature accompanies
the fluctuations on the outdoor temperature.

O�ce 6

This and the following two o�ces, 7 and 8, are in the same building. Each being
located at a di�erent position within the building and some on di�erent floors. The
windows’ facade of this particular unit faces the building’s open parking lot.
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Figure 35: O�ce 5: Monitored data (January 17 to 25)

AC Operation

Figure 41 shows the combination of the registered data, evidencing that the AC is
mostly activated when the outdoor temperature is above 25°C, and the indoor temperature
around 30°C, usually during the afternoon. However, there were two AC activations that
occurred in the morning, after the o�ce remained closed and unoccupied for a prolonged
period, such as the weekend. On Monday December 18, it is possible to see that the AC
was activated in the morning, unlike most days, even though the outdoor temperature was
close to 20°C. However, the indoor temperature on this same date and time, was around
30°C, resulting in AC activation instead of window opening in this case.

Window Operation

As a counterpoint to the above mentioned situation, on Tuesday December 19, the
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Figure 36: O�ce 5: Monitored data (March 28 to April 06)

indoor and outdoor temperatures were about the same as the previous day, 30°C and 20°C,
respectively. However, users opened the windows instead of activating the AC, clearly
depicting that for the same scenario, di�erent actions can be taken. As for the remainder
of the monitored period, it is possible to see that there were long periods of open windows,
usually starting in the morning and lasting until the beginning of the afternoon, around
2 pm, when the outdoor temperature began to increase and reached values close to the
indoor temperature (Figure 41).

Indoor and Outdoor Temperatures

In general the indoor temperature in this o�ce remained constant, though high (over
25°C). This temperature was maintained even overnight, when the outdoor temperature
significantly decreased, given it reached close to or exceeded 30°C during the day and
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Figure 37: O�ce 5: Histogram 1 - Frequency of actions by indoor temperature

Figure 38: O�ce 5: Histogram 2- Frequency of actions by outdoor temperature

reached close to or below 20°C between 2 am and 6 am. Because the indoor temperature
was constantly high, Figure 42 illustrates that both actions took place more frequently
when the indoor temperature was between 26 and 30°C.

As in response to the outdoor temperature (Figure 43), the events were less frequent.
Except for window opening between 19 and 20°C, which showed the highest frequency
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Figure 39: O�ce 5: Histogram 3 - Relative frequency of actions by period

and is likely to be in the morning, as observed in Figure 44. This illustrates that windows
remained open in the morning and the AC was activated in the afternoon, a behavior that
was observed in several of the monitored rooms.

O�ce 7

O�ces 7 and 8 were monitored during the same period. There was a malfunction
on the equipment monitoring the AC on both units, therefore the AC activation in these
units was observed according to the relative humidity (RH) recorded with the indoor
temperature. It is possible to identify when the AC was activated, though the time precision
is not as accurate as on the other monitored units. There are two occupants in this o�ce
and at times this number increases, as clients come in for meetings. There is a small hall
with a sliding glass door that is always kept closed.

AC Operation

Figure 46 shows that AC operation in this o�ce follows the same general pattern
as the other monitored o�ces in the study. During the morning, when the outdoor
temperature was close to 20°C, the AC remained deactivated. As the outdoor temperature
rose, reaching higher values in the beginning of the afternoon, the AC was activated, which
can be identified by significant decreases in RH values and a small decrease on the indoor
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Figure 40: O�ce 6 floor plan. No scale.

temperature.

Window Operation

Occupants in this o�ce always kept the windows closed when the AC was activated,
alternating well between the two actions. Therefore, windows were mostly opened in the
morning, while the outdoor temperature was around 20°C, and closed around midday,
when the temperature rose.

Indoor and Outdoor Temperatures

Although o�ces 7 and 8 are in the same building, their positioning within the
building di�ers, and each o�ce performs di�erently. O�ce 7 is located between two
other o�ces on the 10th floor, with no external walls other then the windows’ facade. As
it can be observed in Figure 46, the indoor temperature was constant throughout the
entire measuring period, with slight decreases when the AC was activated. Although the
outdoor temperature fluctuates and decreases several degrees during the night, the indoor
temperature did not vary much. Therefore, it is possible to infer that users in this unit
react, to some degree, in response to indoor temperature.
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Figure 41: O�ce 6: Monitored data

In Figure 47 it is possible to see that users activated the AC with a higher frequency
when the indoor temperature was above 25°C, but mainly when it exceeded 26°C. As
shown in Figure 48, users alternated well between opening windows and activating the AC,
being that the change in the action taken was around 21°C. This can be rea�rmed when
looking at Figure 49, as it shows well the period with higher window opening frequency
was the morning, and AC activation in the afternoon. As observed in other o�ces, as
the outdoor temperature increases, users tend to close the window and activate the AC,
configuring a greater use of natural ventilation in the morning and air conditioning in the
afternoon.

O�ce 8

O�ce 8 is a corner o�ce, meaning there is an exterior wall, which is green. This

Camila Anchieta
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Figure 42: O�ce 6: Histogram 1 - Frequency of actions by indoor temperature

Figure 43: O�ce 6: Histogram 2- Frequency of actions by outdoor temperature

o�ce is subdivided into 2 o�ces (Figure 50), one for the director and another where there
is an open space with several workstations and a storage area. The director’s o�ce is fully
separated, with its own AC unit. The space monitored in this campaign was the area
where the workstations are located, and where several users occupy.

AC Operation
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Figure 44: O�ce 6: Histogram 3 - Relative frequency of actions by period

The AC was activated several times while the window was open. As previously
identified in other units, users in this o�ce activated the AC when the outdoor temperature
rose, between 1 pm and 2 pm. As for the indoor temperature, it showed a greater influence
in this unit, given its values reached 30°C, triggering AC activation.

Window Operation

There were short periods of open window in this o�ce, as the indoor temperature
quickly increased during such periods, causing windows to be closed and the AC activated.
On the morning of January 30, it is possible to see that there was greater window operation,
which can be explained by looking at complementary data, that between 9 and 10 am it
rained.

Indoor and Outdoor Temperatures

As above mentioned, this unit presented very high indoor temperatures during
the monitored period. Figure 52 shows that both actions were taken when the indoor
temperature was above 25°C, the average value for both being 28.3°C. As for the outdoor
temperature, actions were taken at an average value of 21°C (Figure 53), which can lead to
infer that the indoor temperature had more impact on actions in this unit. Di�ering from
o�ce 7, which is in the same building, users in this o�ce did not present one behavior
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Figure 45: O�ce 7 floor plan. No scale.

in the morning (window opening) and another in the afternoon (AC activation), which
could be related to the rising outdoor temperature. Figure 54 shows that the AC was
activated with high frequencies almost all day long, reinforcing the information that indoor
temperatures were constantly high and users responded to it mostly by activating the air
conditioning.

O�ce 9

O�ces 9 and 10 are in the same building, though monitored during di�erent periods
during the summer. There are four occupants in this o�ce, however one of them is mostly
present after the lunch break. The o�ce is subdivided into two rooms, though the partitions
to create this subdivision are not from floor to ceiling, and do not obstruct the AC unit,
therefore it was not included in Figure 55.

AC Operation

Occupants in this o�ce activated the AC several times and for long periods, some-
times during all working hours, always at very low temperatures (Figure 56). However, even
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Figure 46: O�ce 7: Monitored data

though the AC equipment registered such low temperatures, the indoor temperature did
not decrease much, and stabilized at 25 and 26°C. This unit presented indoor temperatures
always above 25°C, remaining constant around that value throughout the monitored period.
It is possible to see that when the AC was activated, it worked mostly to prevent the
indoor temperature from rising as the outdoor temperature rose, instead of decreasing it.

Window Operation

There were few window opening events, given the AC was active for the most part
of the monitored period. Windows remained closed when the AC was on, and most days it
remained that way for the entire period. It is possible to see in Figure 56 that windows
were mostly opened when the outdoor temperature was around 20°C. As it rose, windows
were closed and the AC was activated.

Camila Anchieta
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Figure 47: O�ce 7: Histogram 1 - Frequency of actions by indoor temperature

Figure 48: O�ce 7: Histogram 2- Frequency of actions by outdoor temperature

Indoor and Outdoor Temperatures

As observed in other monitored units, the indoor temperature in this o�ce was
constant and mainly around 26°C. Figure 57 shows that the mean value for the indoor
temperature regarding window opening frequency was 26.3°C, which is the minimum value
for AC activation. Therefore, it can be said that in this o�ce, when the indoor temperature
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Figure 49: O�ce 7: Histogram 3 - Relative frequency of actions by period

was around 26°C, it triggered a change in occupant’s actions, which also confirms the use
of AC more frequently than the use of open windows. Figure 58 presents how the AC
was more frequently activated when the outdoor temperature was 23°C and above, and
Figure 59 allows to confirm that higher outdoor temperatures occurred in the afternoon,
when the remained AC mostly active.

O�ce 10

This o�ce is in the same building as o�ce 9. However, there are subdivisions on
this unit, and O�ce 10 is one of the subdivisions within a greater o�ce. Unlike o�ce 9,
the subdivisions in this space create fully enclosed rooms, each with its own AC unit. The
monitored o�ce within this set of rooms is occupied by one female user, who eventually
leaves the o�ce due to the nature of the business in this space.

AC Operation

The AC was activated every day during the measuring period, most events while
the windows were closed. There were two occasions when the AC was active and the
windows were open, though brief periods. As observed in the other o�ce within the same
building, the AC in o�ce 10 was also activated at a very low temperature. However,
unlike in o�ce 9, when the AC was activated, the indoor temperature quickly decreased,
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Figure 50: O�ce 8 floor plan. No scale.

accompanying the AC temperature and sometimes remaining at around 25°C and at other
times around 20°C.

Window Operation

The window was opened every morning during the monitored period. Figure 61
shows that when the window was opened, the outdoor temperature was 5°C (or more)
below the indoor temperature, which were at about 20 and 25°C, respectively. On March
15, this temperature di�erence was even more evident, displaying a di�erence of 8°C
between them, showing that the occupant kept the window open for a longer period of
time, since it took longer for the outdoor temperature to reach values close to the indoor
temperature (about 30°C on this specific day). Windows were closed most days during the
afternoon, when the outdoor temperature increased, even though the indoor temperature
remained almost the same as in the morning.

Indoor and Outdoor Temperatures
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Figure 51: O�ce 8: Monitored data

Figure 62 shows that the user took one of the observed actions mostly when the
indoor temperature was above 25°C. The exceptions being that there was no window
opening, only AC activation, when it was above 29°C, and no AC activation, only window
opening, when it was below 25°C. In relation to the outdoor temperature, Figure 63 shows
that there was a higher frequency of window opening between 18 and 23°C, and of AC
activation between 25 and 30°C, although there was some AC activation, though at a
lower frequency, when outdoor temperature was between 18 and 22°C.

Figure 64 shows that the user kept the window opened mostly in the morning, with
its frequency gradually decreasing as the day went by, which coincides with the outdoor
temperature increasing, leading to the AC activation period frequency also increasing. The
periods of activated AC displayed in the morning are likely to coincide with the AC being
activated at lower outdoor temperatures (Figure 63), which are observed in the morning

Camila Anchieta
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Figure 52: O�ce 8: Histogram 1 - Frequency of actions by indoor temperature

Figure 53: O�ce 8: Histogram 2- Frequency of actions by outdoor temperature

(Figure 61).

2.7.1 General Considerations

The characterization and analysis of each room for the summer period allowed
some general considerations to be made regarding behaviors that were common in several
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Figure 54: O�ce 8: Histogram 3 - Relative frequency of actions by period

o�ces. Brief considerations in relation to a building’s thermal performance and positioning
of the AC unit could also be drawn from this analysis.

Temperatures

a. When the outdoor temperature was 5°C or more lower than the indoor tempera-
ture, approximately 20 and 25°C respectively, the windows were open and the AC was o�.
This coincided mostly with early mornings, between 7 and 9 am, which is also the time of
arrival in o�ces.

b. When the outdoor temperature values reached and/or exceed the indoor values,
around 25°C and above, the windows were closed and the AC was activated. As the outdoor
temperature progressively increased during the day, reaching its maximum values around
midday, windows were closed and the AC activated. The average observed temperature
for AC activation was about 25°C.

c. Periods of open windows and activated AC mostly coincided with lower and
higher outdoor temperatures, generally showing morning and afternoon, respectively.

d. O�ces where the indoor temperature reached very high values, close to 30°C,
windows were closed and the AC activated, even if the outdoor temperature was around
20°C.
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Figure 55: O�ce 9: floor plan. No scale.

Specifics

O�ce 1: AC was activated every day and remained in that state for long periods
of time. Indoor temperature did not decrease, occupants operated the AC while it was
already on (Figure 14), probably in an e�ort to decrease the temperature even more. AC
unit is possibly not well dimensioned for the space and number of users, and/or not well
positioned. The unit is on the last floor of the building, which needs to be taken into
account, due to heat gain from the roof.

O�ce 3: AC was not activated during the monitored period. Possible unusual
occupant preference, AC unit location, health conditions, etc. Example of unit where
questionnaires will aid in explaining occupant behavior.

O�ces 6, 7 and 8: O�ces within the same building. O�ce 8 displays an external
wall, and therefore also the highest indoor temperatures, close to, and sometimes exceeding,
30°C. At times, even during the periods when the AC was active, indoor temperature
remained close to 30 °C. The other two o�ces, 6 and 7, also presented high indoor
temperatures. However, in these units, when the AC was activated, indoor temperature
quickly decreased.

O�ce 9: Constant indoor temperature (around 26°C), and AC was activated
every day. Some days there was only AC operation and windows were not opened. AC
always activated at a very low temperature, but indoor temperature did not decrease much.
Possibly location of AC unit is not favorable to cooling down the entire o�ce. Current
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Figure 56: O�ce 9: Monitored data

location probably chosen due to window proximity and installation viability.

Camila Anchieta
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Figure 57: O�ce 9: Histogram 1 - Frequency of actions by indoor temperature

Figure 58: O�ce 9: Histogram 2- Frequency of actions by outdoor temperature
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Figure 59: O�ce 9: Histogram 3 - Relative frequency of actions by period

Figure 60: O�ce 10 floor plan. No scale.
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Figure 61: O�ce 10: Monitored data

Camila Anchieta
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Figure 62: O�ce 10: Histogram 1 - Frequency of actions by indoor temperature

Figure 63: O�ce 10: Histogram 2- Frequency of actions by outdoor temperature
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Figure 64: O�ce 10: Histogram 3 - Relative frequency of actions by period
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3 FUTURE ACTIVITIES

This section presents the activities to be developed in this research as a means
to achieve its objectives. The schedule for such activities is also presented, including the
stages that have already been completed.

3.1 Method

This research counts with a period of internship at the Karlsruhe Institute of
Technology (KIT), Germany, where stages (c) and (d) are scheduled to be developed.

3.1.1 (b) In situ measurements and Data Analysis

This stage is ongoing and scheduled to be concluded in October/2018. The summer
monitoring was concluded and its data treated and analyzed. The following monitoring
periods, fall, winter and spring, will follow the same procedure and method.

3.1.2 (c) Statistical methods’ application and Algorithm’s creation

At this stage the data set will be complete, and it will provide the necessary
information to adequately choose the most appropriate statistical method to be applied,
and thus create the algorithm.

3.1.3 (d) Algorithm’s validation and test

After the algorithm is created, it will be validated to verify its accuracy in predicting
occupant behavior within a mixed-mode o�ce. Once it is validated, it will then be tested
to demonstrate its application.

3.2 Thesis Structure

The following structure is a suggestion to be used in the final thesis, as it di�ers
from the structure used in this volume.

• Abstract

• Introduction

• Literature Review

• Method

– Development of Theoretical Model
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– Units of analysis, population and scope

– (a) Buildings’ data collection and Pre-test

– (b) In situ measurements and Data Analysis

– (c) Statistical methods’ application and Algorithm’s creation

– (d) Algorithm’s validation and test

• Results

– Analysis of Complete Data set

– Behavior characterization according to season

– Algorithm’s Validation

– Test

• Conclusions

• Suggestions for Future Work

• References

3.3 Schedule
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Months
Activities Year 1 2 3 4 5 6 7 8 9 10 11 12

2016
Class Credits x x x x x
Literature review x x x x x x x x x x x x

2017
Literature review x x x x x x x x x x x x
Teaching Internship Program x x x x x
Foreign Language Prof.Exam x
Data collection and initial visits x x x
Pre-test x x
Data Collection x x

2018
Data Collection x x x x x x x x x x
Qualifying Exam x
Windsor Conference x
Partial data processing x x x x x x x x x x
Internship at KIT x x

2019
Internship at KIT x x x x x x x x x x x x
Healthy Buildings Europe x

2020
Thesis writing and defense panel x x x x x x x x

Table 12: Activities Schedule
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